【題目】(9分)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程的兩個實數(shù)根.
(1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
【答案】解:(1)∵四邊形ABCD是菱形,∴AB=AD。
又∵,
當(dāng),即m=1時,四邊形ABCD是菱形。
把m=1代入,得。
∴。
∴菱形ABCD的邊長是。
(2)把AB=2代入,得,解得。
把代入,得。
解得,。∴AD=。
∵四邊形ABCD是平行四邊形,
∴□ABCD的周長是2(2+)=5。
【解析】
(1)根據(jù)菱形的性質(zhì)可得出AB=AD,由根的判別式即可得出關(guān)于m的一元二次方程,解之即可得出m的值;
(2)將x=2代入一元二次方程可求出m的值,再根據(jù)根與系數(shù)的關(guān)系即可得出AB+AD的值,利用平行四邊形的性質(zhì)即可求出平行四邊形ABCD的周長.
解:(1)∵四邊形ABCD是菱形,
∴AB=AD,
∵AB、AD的長是關(guān)于x的一元二次方程x2﹣mx+=0的兩個實數(shù)根,
∴△=(﹣m)2﹣4()=m2﹣2m+1=0,
解得:m=1.
∴當(dāng)m為1時,四邊形ABCD是菱形.
(2)將x=2代入x2﹣mx+=0中,得:4﹣2m+=0,
解得:m=,
∵AB、AD的長是關(guān)于x的一元二次方程x2﹣mx+=0的兩個實數(shù)根,
∴AB+AD=m=,
∴平行四邊形ABCD的周長=2(AB+AD)=2×=5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代偉大的數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個這樣的圖形拼成,若a=3,b=4,則該矩形的面積為( )
A. 20 B. 24 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克元,經(jīng)試銷發(fā)現(xiàn),銷售量(千克)與銷售單價(元)符合一次函數(shù)關(guān)系,如圖是與的函數(shù)關(guān)系圖象.
求與的函數(shù)解析式(也稱關(guān)系式);
設(shè)該水果銷售店試銷草莓獲得的利潤為元,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:x2﹣6x=(x2﹣6x+9)﹣9=(x﹣3)2﹣9;﹣x2+10=﹣(x2﹣10x+25)+25=﹣(x﹣5)2+25,這一種方法稱為配方法,利用配方法請解以下各題:
(1)按上面材料提示的方法填空:a2﹣4a= = .﹣a2+12a= = .
(2)探究:當(dāng)a取不同的實數(shù)時在得到的代數(shù)式a2﹣4a的值中是否存在最小值?請說明理由.
(3)應(yīng)用:如圖.已知線段AB=6,M是AB上的一個動點,設(shè)AM=x,以AM為一邊作正方形AMND,再以MB、MN為一組鄰邊作長方形MBCN.問:當(dāng)點M在AB上運動時,長方形MBCN的面積是否存在最大值?若存在,請求出這個最大值;否則請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場將進(jìn)價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出 4臺.商場要想在這種冰箱銷售中每天盈利 4800 元,同時又要使百姓得到實惠,每臺冰箱應(yīng)降價多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD為正方形,點E為線段AC上一點,連接DE,過點E作EF⊥DE,交射線BC于點F,以DE、EF為鄰邊作矩形DEFG,連接CG.
(1)如圖1,求證:矩形DEFG是正方形;
(2)若AB=2,CE=,求CG的長度;
(3)當(dāng)線段DE與正方形ABCD的某條邊的夾角是30°時,直接寫出∠EFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D.E是AB延長線上一點,CE交⊙O于點F,連結(jié)OC,AC.
(1)求證:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,已知的三個頂點的坐標(biāo)分別為,,.
(1)將向上平移個單位長度,再向左平移個單位長度,得到,請畫出(點,,的對應(yīng)點分別為,,)
(2)請畫出與關(guān)于軸對稱的(點,,的對應(yīng)點分別為,,)
(3)請寫出,的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A的坐標(biāo)為(15,0),點B的坐標(biāo)為(6,12),點C的坐標(biāo)為(0,6), 直線AB交y軸于點D, 動點P從點C出發(fā)沿著y軸正方向以每秒2個單位的速度運動, 同時,動點Q從點A出發(fā)沿著射線AB以每秒a個單位的速度運動設(shè)運動時間為t秒,
(1)求直線AB的解析式和CD的長.
(2)當(dāng)△PQD與△BDC全等時,求a的值.
(3)記點P關(guān)于直線BC的對稱點為,連結(jié)當(dāng)t=3,時, 求點Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com