【題目】如圖,在△ABC中,∠ABC=50°,∠ACB=80°,延長CB至D,使DB=BA,延長BC至E,使CE=CA,連接AD,AE.求∠D,∠E,∠DAE的度數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績?nèi)鐖D所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
初中部 | a | 85 | b | s初中2 |
高中部 | 85 | c | 100 | 160 |
(1)根據(jù)圖示計(jì)算出a、b、c的值;
(2)結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)隊(duì)的決賽成績較好?
(3)計(jì)算初中代表隊(duì)決賽成績的方差s初中2,并判斷哪一個(gè)代表隊(duì)選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說法中,錯(cuò)誤的是( )
A. 拋物線于x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣2,0)
B. 拋物線與y軸的交點(diǎn)坐標(biāo)為(0,6)
C. 拋物線的對稱軸是直線x=0
D. 拋物線在對稱軸左側(cè)部分是上升的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級開展征文活動,征文主題只能從“愛國”“敬業(yè)”“誠信”“友善”四個(gè)主題選擇一個(gè),九年級每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)求共抽取了多少名學(xué)生的征文;
(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,選擇“愛國”主題所對應(yīng)的圓心角是多少;
(4)如果該校九年級共有1200名學(xué)生,請估計(jì)選擇以“友善”為主題的九年級學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,C是AB上一點(diǎn),點(diǎn)D,E分別在AB兩側(cè),AD∥BE,且AD=BC,BE=AC.
(1)求證:CD=CE;
(2)連接DE,交AB于點(diǎn)F,猜想△BEF的形狀,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點(diǎn)、、分別在、、上,且,垂足為,那么與________(“相等”或“不相等”)26.
如圖,將邊長為的正方形紙片沿折疊,使得點(diǎn)落到邊上.若,求出和的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE均為等腰直角三角形,,B、C、E三點(diǎn)共線,BE平分∠AED,F(xiàn)為CD的中點(diǎn),AF、AC的延長線分別交DE于H、G點(diǎn)。
求證:⑴; ⑵
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
該函數(shù)圖象的對稱軸是________,頂點(diǎn)坐標(biāo)________;
選取適當(dāng)?shù)臄?shù)據(jù)填入下表,并描點(diǎn)畫出函數(shù)圖象;
… | … | ||||||
… | … |
求拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo);
利用圖象直接回答當(dāng)為何值時(shí),函數(shù)值大于?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BD平分∠ABF,且交AE于點(diǎn)D.
(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)設(shè)AP交BD于點(diǎn)O,交BF于點(diǎn)C,連接CD,當(dāng)AC⊥BD時(shí),求證:四邊形ABCD是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com