【題目】如圖,中,以為直徑作⊙,交于點(diǎn),為弧上一點(diǎn),連接、、,交于點(diǎn).
(1)若,求證:為⊙的切線;
(2)若,求證:平分;
(3)在(2)的條件下,若,求⊙的半徑.
【答案】(1)詳見解析;(2)詳見解析;(3).
【解析】
(1)根據(jù)AB為⊙直徑,得出=90°,即°,,,推出,即°,
所以==90°,得出AC為⊙的切線;(2)證明, 得到,因?yàn)?/span>,所以,即可得到AE平分;(3)過點(diǎn)F作FH⊥AB于H可證,可得AH=AD=4,FH=DF=2;可證故;BH=x,則BD=2x,BF=2x-2,利用勾股定理可得,;解得BH=,AB=BH+AH=,由AO=AB=,即可得⊙的半徑.
(1)證明:∵AB為⊙直徑,
∴=90°,
∴°,
∵,,
∴,
∴°,
即°,
∴AC為⊙的切線;
(2)證明:∵,
∴;
∵,
∴;
∴,
∵,
∴;
即AE平分.
(3)解:過點(diǎn)F作FH⊥AB于H.
∴°;
又∵,AF=AF,
∴;
∴AH=AD=4,FH=DF=2;
∵°,,
∴,
∴;
設(shè)BH=x,則BD=2x,BF=2x-2,
∴,
∴;
∴x=0(舍)或x=;
∴BH=,AB=BH+AH=;
∴AO=AB=;
∴⊙的半徑為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在∠ABC中,∠ABC=90°,tan∠BAC=.
(1)如圖1,分別過A、C兩點(diǎn)作經(jīng)過點(diǎn)B的直線的垂線,垂足分別為M、N,若點(diǎn)B恰好是線段MN的中點(diǎn),求tan∠BAM的值;
(2)如圖2,P是邊BC延長線上一點(diǎn),∠APB=∠BAC,求tan∠PAC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對稱軸為x=﹣1.給出四個(gè)結(jié)論:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,tanA=,點(diǎn)D,E分別在邊AB、AC上,DE⊥AC,DE=3,DB=10.求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為8的正方形ABCD中,E、F分別是邊AB、BC上的動(dòng)點(diǎn),且EF=6,M為EF中點(diǎn),P是邊AD上的一個(gè)動(dòng)點(diǎn),則CP+PM的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點(diǎn)的縱坐標(biāo)分別為4,2,反比例函數(shù)y=(x>0)的圖象經(jīng)過A,B兩點(diǎn),若菱形ABCD的面積為2,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,0),對稱軸l如圖所示,則下列結(jié)論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結(jié)論是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過,兩點(diǎn),與軸交于點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)在第一象限的拋物線上,且點(diǎn)的橫坐標(biāo)為,設(shè)的面積為,求與的函數(shù)關(guān)系式,并求的最大值;
(3)在軸上是否存在點(diǎn),使以點(diǎn),,為頂點(diǎn)的三角形為等腰三角形?如果存在,直接寫出點(diǎn)坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com