在正方形ABCD中,點M是射線BC上一點,點N是CD延長線上一點,且BM=DN.直線BD與MN相交于E.
(1)如圖1,當點M在BC上時,求證:BD-2DE=BM;
(2)如圖2,當點M在BC延長線上時,BD、DE、BM之間滿足的關系式是 ;
(3)在(2)的條件下,連接BN交AD于點F,連接MF交BD于點G.若DE=,且AF:FD=1:2時,求線段DG的長.
(1)證明見解析;(2)BD+2DE=BM;(3).
解析試題分析:(1)過點M作MF⊥BC交BD于點F,推出FM=DN,根據(jù)AAS證△EFM和△EDN全等,推出DE=EF,根據(jù)正方形的性質(zhì)和勾股定理求出即可;
(2)過點M作MF⊥BC交BD于點F,推出FM=DN,根據(jù)AAS證△EFM和△EDN全等,推出DE=EF,根據(jù)正方形的性質(zhì)和勾股定理求出即可;
(3)根據(jù)已知求出CM的長,證△ABF∽△DNF,得出比例式,代入后求出CD長,求出FM長即可.
試題解析:(1)過點M作MF⊥BC交BD于點F,
∵四邊形ABCD是正方形,
∴∠C=90°,
∴FM∥CD,
∴∠NDE=∠MFE,
∴FM=BM,
∵BM=DN,
∴FM=DN,
在△EFM和△EDN中,
,
∴△EFM≌△EDN,
∴EF=ED,
∴BD-2DE=BF,
根據(jù)勾股定理得:BF=BM,
即BD-2DE=BM.
(2)過點M作MF⊥BC交BD于點F,與(1)證法類似:BD+2DE=BF=BM,
(3)由(2)知,BD+2DE=BM,BD=BC,
∵DE=,
∴CM=2,
∵AB∥CD,
∴△ABF∽△DNF,
∴AF:FD=AB:ND,
∵AF:FD=1:2,
∴AB:ND=1:2,
∴CD:ND=1:2,
CD:(CD+2)=1:2,
∴CD=2,∴FD=,
∴FD:BM=1:3,
∴DG:BG=1:3,
∴DG=.
考點:1.正方形的性質(zhì);2.全等三角形的判定與性質(zhì);3.相似三角形的判定與性質(zhì).
科目:初中數(shù)學 來源: 題型:解答題
如圖,點P是菱形ABCD對角線AC上的一點,連接DP并延長DP交邊AB于點E,連接BP并延長BP交邊AD于點F,交CD的延長線于點G.
(1)求證:△APB≌△APD;
(2)已知DF∶FA=1∶2,設線段DP的長為x,線段PF的長為y.
①求y與x的函數(shù)關系式;
②當x=6時,求線段FG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
在Rt△ABC中,∠C=90°,D為AB邊上一點,點M、N分別在BC、AC邊上,
且DM⊥DN,作MF⊥AB于點F,NE⊥AB于點E。
(1)特殊驗證:如圖1,若AC=BC,且D為AB中點,求證:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC。
①如圖2,若D為AB中點,(1)中的兩個結(jié)論有一個仍成立,請指出并加以證明;
②如圖3,若BD=kAD,條件中“點M在BC邊上”改為“點M在線段CB的延長線上”,其它條件不變,請?zhí)骄緼E與DF的數(shù)量關系并加以證明。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在正方形ABCD中,E是BC上的一點,連結(jié)AE,作BF⊥AE,垂足為H,交CD于F,作CG∥AE,交BF于G.
求證:(1)CG=BH,
(2)FC2=BF·GF,
(3)=.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在□ABCD中,AB=4,AD=6,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=.
(1)求AE的長; (2)求ΔCEF的周長和面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知:△ABC在坐標平面內(nèi),三個頂點的坐標分別為A(0,3),B(3,4),C(2,2),(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)
(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;
(2)以點B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2∶1,并直接寫出C2點的坐標及△A2BC2的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,A(-1,1),B(-2,-1).(1)以原點O為位似中心,把線段AB放大到原來的2倍,請在圖中畫出放大后的線段CD;(2)在(1)的條件下,寫出點A的對應點C的坐標為 ,點B的對應點D的坐標為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com