【題目】如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口P,4小時(shí)后貨船在小島的正東方向,求貨船的航行速度.(結(jié)果保留根號(hào))
【答案】貨船的航行速度為7海里/時(shí).
【解析】
如圖作PQ⊥AB于點(diǎn)Q,設(shè)貨船速度為x海里/時(shí),則AP=56海里,PB=4x海里,在Rt△APQ中求得PQ的長(zhǎng),在和Rt△PQB中用x表示PQ的長(zhǎng),然后通過(guò)計(jì)算即可求得結(jié)果.
設(shè)貨船速度為x海里/時(shí),
4小時(shí)后貨船在點(diǎn)B處,作PQ⊥AB于點(diǎn)Q,
由題意AP=56海里,PB=4x海里,
在Rt△APQ中,∠APQ=60°,
∴PQ=AP=28,
在Rt△PQB中,∠BPQ=45°,
∴PQ=PB×cos45°=2x,
∴2x=28,
解得:x=7.
答:貨船的航行速度為7海里/時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究所將某種材料加熱到1000℃時(shí)停止加熱,并立即將材料分為A、B兩組,采用不同工藝做降溫對(duì)比實(shí)驗(yàn),設(shè)降溫開(kāi)始后經(jīng)過(guò)x min時(shí),A、B兩組材料的溫度分別為yA℃、yB℃,yA、yB與x的函數(shù)關(guān)系式分別為yA=kx+b,yB=(x﹣60)2+m(部分圖象如圖所示),當(dāng)x=40時(shí),兩組材料的溫度相同.
(1)分別求yA、yB關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)A組材料的溫度降至120℃時(shí),B組材料的溫度是多少?
(3)在0<x<40的什么時(shí)刻,兩組材料溫差最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),B(2,0),與y軸相交于點(diǎn)C.
(1)求二次函數(shù)的解析式;
(2)若點(diǎn)E是第一象限的拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)四邊形ABEC的面積最大時(shí),求點(diǎn)E的坐標(biāo),并求出四邊形ABEC的最大面積;
(3)若點(diǎn)M在拋物線上,且在y軸的右側(cè).⊙M與y軸相切,切點(diǎn)為D.以C,D,M為頂點(diǎn)的三角形與△AOC相似,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:
①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.
其中正確的結(jié)論的個(gè)數(shù)是( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,OA=1.現(xiàn)將菱形OABC沿x軸的正方向無(wú)滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2018次,點(diǎn)B的落點(diǎn)依次為B1,B2,B3,B4,…,則B2018的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司購(gòu)進(jìn)一種商品的成本為30元/kg,經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來(lái)90天的銷(xiāo)售單價(jià)p(元/kg)與時(shí)間t(天)之間的相關(guān)信息如圖,銷(xiāo)售量y(kg)與時(shí)間t(天)之間滿足一次函數(shù)關(guān)系,且對(duì)應(yīng)數(shù)據(jù)如表,設(shè)第t天銷(xiāo)售利潤(rùn)為w(元)
時(shí)間t(天) | 10 | 30 |
每天的銷(xiāo)售量 y(kg) | 180 | 140 |
(1)分別求出售單價(jià)p(元/kg)、銷(xiāo)售量y(kg)與時(shí)間t(天)之間的函數(shù)關(guān)系式;
(2)問(wèn):銷(xiāo)售該商品第幾天時(shí),當(dāng)天的銷(xiāo)售利潤(rùn)最大?并求出最大利潤(rùn);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E為 BC上的點(diǎn),F(xiàn)為 CD邊上的點(diǎn),且AE=AF,AB=4,設(shè)EC=x,△AEF 的面積為y,則y與x之間的函數(shù)關(guān)系式是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=AC,AB的垂直平分線DE交BC延長(zhǎng)線于E,交AC于F,∠A=40,AB+BC=6.
(1)△BCF的周長(zhǎng)為多少?
(2)∠E的度數(shù)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),作CD⊥AB,垂足為D,E為弧BC的中點(diǎn),連接AE、BE,AE交CD于點(diǎn)F.
(1)求證:∠AEC=90°﹣2∠BAE;
(2)過(guò)點(diǎn)E作⊙O的切線,交DC的延長(zhǎng)線于G,求證:EG=FG;
(3)在(2)的條件下,若BE=4,CF=6,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com