【題目】如圖,C為線段AE上一動點(不與點A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結(jié)論:
①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.
其中正確的結(jié)論的個數(shù)是( )
A. 2個 B. 3個 C. 4個 D. 5個
【答案】C
【解析】
試題已知△ABC、△DCE為正三角形, 故∠DCE=∠BCA=60°,∴∠DCB=60°,
又因為∠DPC=∠DAC+∠BCA,∠BCA=60°,∴∠DPC>60°, 故DP不等于DE,④錯.
∵△ABC、△DCE為正三角形, ∴∠ACB=∠DCE=60°,AC=BC,DC=EC, ∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE, ∴△ACD≌△BCE(SAS), ∴∠CAD=∠CBE,AD=BE,故①正確;
∴∠AOB=∠CAD+∠CEB=∠CBE+∠CEB, ∵∠ACB=∠CBE+∠CEB=60°, ∴∠AOB=60°,故⑤正確;
∵∠ACB=∠DCE=60°, ∴∠BCD=60°, ∴∠ACP=∠BCQ, ∵AC=BC,∠DAC=∠QBC,
∴△ACP≌△BCQ(ASA), ∴AP=BQ,故③正確.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)【問題提出】
如圖①,已知△ABC是等腰三角形,點E在線段AB上,點D在直線BC上,且ED=EC,將△BCE繞點C順時針旋轉(zhuǎn)60°至△ACF連接EF
試證明:AB=DB+AF
(2)【類比探究】
如圖②,如果點E在線段AB的延長線上,其他條件不變,線段AB,DB,AF之間又有怎樣的數(shù)量關(guān)系?請說明理由
(3)如果點E在線段BA的延長線上,其他條件不變,請在圖③的基礎(chǔ)上將圖形補充完整,并寫出AB,DB,AF之間的數(shù)量關(guān)系,不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師駕車從家出發(fā)到植物園賞花,勻速行駛一段時間后,途中遇到堵車原地等待一會兒,然后加速行駛,到達植物園,參觀結(jié)束后,張老師駕車一路勻速返回,其中x表示汽車從家出發(fā)后所用時間,y表示車離家的距離,下面能反映y與x的函數(shù)關(guān)系式的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的兩條角平分線BD、CE交于O,且∠A=60°,則下列結(jié)論中不正確的是( )
A.∠BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l及其兩側(cè)兩點A、B.
(1)在直線l上求一點O,使到A、B兩點距離之和最短;
(2)在直線l上求一點P,使PA=PB;
(3)在直線l上求一點Q,使l平分∠AQB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AE⊥FE,垂足為E,且E是DC的中點.
(1)如圖①,如果FC⊥DC,AD⊥DC,垂足分別為C,D,且AD=DC,判斷AE是∠FAD的角平分線嗎?(不必說明理由)
(2)如圖②,如果(1)中的條件“AD=DC”去掉,其余條件不變,(1)中的結(jié)論仍成立嗎?請說明理由;
(3)如圖③,如果(1)中的條件改為“AD∥FC”,(1)中的結(jié)論仍成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對稱軸x=﹣1,給出下列結(jié)果: ①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0,
則正確的結(jié)論是( )
A.①②③④
B.②④⑤
C.②③④
D.①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD 中,E、F 分別為BC、AD 上的點,將四邊形ABEF 沿直線EF 折疊后,點B 落在CD 邊上的點G 處,點A 的對應(yīng)點為點H.再將折疊后的圖形展開,連接BF、GF、BG,若BF⊥GF.
(1)求證:△ABF≌△DFG;
(2)已知AB=3,AD=5,求tan∠CBG 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com