如果要用下列邊長相同的兩種正多邊形材料組合鋪設(shè)地面,能平整鑲嵌的組合方案是


  1. A.
    正四邊形、正六邊形
  2. B.
    正六邊形、正八邊形
  3. C.
    正四邊形、正八邊形
  4. D.
    正四邊形、正五邊形
C
分析:先計算出正四邊形,正五邊形,正六邊形,正八邊形的內(nèi)角,根據(jù)平整鑲嵌的條件得到90°+2×135°=360°,由此得到正四邊形和正八邊形可以平整鑲嵌.
解答:∵正四邊形,正五邊形,正六邊形,正八邊形的內(nèi)角分別為:90°,108°,120°,135°.
而要用邊長相同的兩種正多邊形材料組合鋪設(shè)地面,能平整鑲嵌必需這兩個正多邊形的內(nèi)角的整數(shù)倍的和為360°,
∵90°+2×135°=360°,
∴正四邊形和正八邊形可以平整鑲嵌.
故選C.
點評:本題考查了兩個正多邊形平整鑲嵌的條件:這兩個正多邊形的內(nèi)角的整數(shù)倍的和為360°.也考查了正多邊形內(nèi)角的計算方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

用一塊邊長為60cm的正方形薄鋼片制作一個長方體盒子:
(1)如果要做成一個沒有蓋的長方體盒子,可先在薄鋼片的四個角上截去四個相同的小正方形(如圖1),然后把四邊折合起來(如圖2);
①求做成的盒子底面積y(cm2)與截去小正方形邊長x(cm)之間的函數(shù)關(guān)系式;
②當(dāng)做成的盒子的底面積為900cm2時,試求該盒子的容積.
(2)如果要做成一個有蓋的長方體盒子,制作方案要求同時符合下列兩個條件:
①必須在薄鋼片的四個角上各截去一個四邊形;(其余部分不能裁截)
②折合后薄鋼片既無空隙又不重疊地圍成各盒面.
請你畫出符合上述制作方案的一種草圖(不必說明畫法與根據(jù));并求當(dāng)?shù)酌娣e為精英家教網(wǎng)800cm2時,該盒子的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

用一塊邊長為60cm的正方形薄鋼片制作一個長方體盒子:
(1)如果要做成一個沒有蓋的長方體盒子,可先在薄鋼片的四個角上截去四個相同的小正方形(如圖1),然后把四邊折合起來(如圖2);
①求做成的盒子底面積y(cm2)與截去小正方形邊長x(cm)之間的函數(shù)關(guān)系式;
②當(dāng)做成的盒子的底面積為900cm2時,試求該盒子的容積.
(2)如果要做成一個有蓋的長方體盒子,制作方案要求同時符合下列兩個條件:
①必須在薄鋼片的四個角上各截去一個四邊形;(其余部分不能裁截)
②折合后薄鋼片既無空隙又不重疊地圍成各盒面.
請你畫出符合上述制作方案的一種草圖(不必說明畫法與根據(jù));并求當(dāng)?shù)酌娣e為800cm2時,該盒子的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

如圖是用一塊邊長為60cm 的正方形薄鋼片制作的一個長方體盒子。
(1)如果要做成一個沒有蓋的長方體盒子,可先在薄鋼片的四個角上截去四個相同的小正方形(如圖甲),然后把四邊折合起來(如圖乙)。
  ①求做成的盒子底面積y(cm2)與截去小正方形邊長x(cm)之間的函數(shù)關(guān)系式;  
②當(dāng)做成的盒子的底面積為900cm2時,試求該盒子的容積。
(2)如果要做成一個有蓋的長方體盒子,其制 作方案要求同時符合下列兩個條件:  
①必須在薄鋼片的四個角上各截去一個四邊形;(其余部分不能裁截)  
②折合后薄鋼片既無空隙、又不重疊地圍成各盒面,請你畫出符合上述制作方案的一種草案  (不必說明畫法與根據(jù)),并求當(dāng)?shù)酌娣e為800cm2時,該盒子的高。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《四邊形》(06)(解析版) 題型:解答題

(2004•泉州)用一塊邊長為60cm的正方形薄鋼片制作一個長方體盒子:
(1)如果要做成一個沒有蓋的長方體盒子,可先在薄鋼片的四個角上截去四個相同的小正方形(如圖1),然后把四邊折合起來(如圖2);
①求做成的盒子底面積y(cm2)與截去小正方形邊長x(cm)之間的函數(shù)關(guān)系式;
②當(dāng)做成的盒子的底面積為900cm2時,試求該盒子的容積.
(2)如果要做成一個有蓋的長方體盒子,制作方案要求同時符合下列兩個條件:
①必須在薄鋼片的四個角上各截去一個四邊形;(其余部分不能裁截)
②折合后薄鋼片既無空隙又不重疊地圍成各盒面.
請你畫出符合上述制作方案的一種草圖(不必說明畫法與根據(jù));并求當(dāng)?shù)酌娣e為800cm2時,該盒子的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年福建省泉州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•泉州)用一塊邊長為60cm的正方形薄鋼片制作一個長方體盒子:
(1)如果要做成一個沒有蓋的長方體盒子,可先在薄鋼片的四個角上截去四個相同的小正方形(如圖1),然后把四邊折合起來(如圖2);
①求做成的盒子底面積y(cm2)與截去小正方形邊長x(cm)之間的函數(shù)關(guān)系式;
②當(dāng)做成的盒子的底面積為900cm2時,試求該盒子的容積.
(2)如果要做成一個有蓋的長方體盒子,制作方案要求同時符合下列兩個條件:
①必須在薄鋼片的四個角上各截去一個四邊形;(其余部分不能裁截)
②折合后薄鋼片既無空隙又不重疊地圍成各盒面.
請你畫出符合上述制作方案的一種草圖(不必說明畫法與根據(jù));并求當(dāng)?shù)酌娣e為800cm2時,該盒子的高.

查看答案和解析>>

同步練習(xí)冊答案