【題目】如圖,在中,,,把線段沿射線方向平移(點始終在射線上)至位置,直線與直線交于點,又聯(lián)結與直線交于點.

1)當時,求證:;

2)當點位于線段上時(不含端點、),設,,試求關于的函數(shù)解析式,并寫出定義域;

3)當以、、為頂點的三角形與相似時,求的長.

【答案】1)見解析;(2;(3

【解析】

1)先根據(jù)得到,根據(jù),,求出,則得到,再根據(jù)相似三角形的判定即可求解;

2)由得到,,由,得到,,根據(jù)也得到,代入得

化簡得

3)當點的延長線上時,設,,同樣可得,根據(jù)平行得到,又必定大于,若兩個三角形相似,只有,故可得到,代入得,再求解即可得到答案.

1)∵,

,,

,

又∵是公共角,

2)∵,

,

,

,得到

3)當點的延長線上時,設,同樣可得

中,

,

又∵必定大于,

∴若兩個三角形相似,只有

,

,

,

,

(舍),

∴當相似時,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,拋物線經(jīng)過點A(0,4),B(1,0),C(5,0),其對稱軸與x軸相交于點M.

(1)求拋物線的解析式和對稱軸;

(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最小?若存在,請求出點P的坐標;若不存在,請說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,在平面直角坐標系中,已知拋物線 y=ax2+bx5 x 軸交于 A(﹣1,0),B5, 0)兩點,與 y 軸交于點 C

1)求拋物線的函數(shù)表達式;

2)若點 D y 軸上的一點,且以 B,CD 為頂點的三角形與ABC 相似,求點 D 的坐標;

3)如圖 2,CEx 軸與拋物線相交于點 E,點 H 是直線 CE 下方拋物線上的動點,過點 H且與 y 軸平行的直線與 BC,CE 分別相交于點 F,G,試探究當點 H 運動到何處時,四邊形CHEF 的面積最大,求點 H 的坐標及最大面積;

4)若點 K 為拋物線的頂點,點 M4,m)是該拋物線上的一點,在 x 軸,y 軸上分別找點 P,Q,使四邊形 PQKM 的周長最小,求出點 P,Q 的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點都在格點上,點A的坐標為(2,2)請解答下列問題:

(1)畫出ABC關于y軸對稱的A1B1C1,并寫出A1的坐標.

(2)畫出ABC繞點B逆時針旋轉(zhuǎn)90°后得到的A2B2C2,并寫出A2的坐標.

(3)畫出A2B2C2關于原點O成中心對稱的A3B3C3,并寫出A3的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《國家學生體質(zhì)健康標準》規(guī)定:體質(zhì)測試成績達到90.0分及以上的為優(yōu)秀;達到80.0分至89.9分的為良好;達到60.0分至79.9分的為及格;59.9分及以下為不及格,某校為了了解九年級學生體質(zhì)健康狀況,從該校九年級學生中隨機抽取了10%的學生進行體質(zhì)測試,測試結果如下面的統(tǒng)計表和扇形統(tǒng)計圖所示。

各等級學生平均分統(tǒng)計表

等級

優(yōu)秀

良好

及格

不及格

平均分

92.1

85.0

69.2

41.3

各等級學生人數(shù)分布扇形統(tǒng)計圖

1)扇形統(tǒng)計圖中不及格所占的百分比是  ;

2)計算所抽取的學生的測試成績的平均分;

3)若所抽取的學生中所有不及格等級學生的總分恰好等于某一個良好等級學生的分數(shù),請估計該九年級學生中約有多少人達到優(yōu)秀等級。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商場銷售某種冰箱,該種冰箱每臺進價為2500元.已知原銷售價為每臺2900元時,平均每天能售出8臺.若在原銷售價的基礎上每臺降價50元,則平均每天可多售出4臺.設每臺冰箱的實際售價比原銷售價降低了x元.

1)填表(不需化簡):


每天的銷售量/

每臺銷售利潤/

降價前

8

400

降價后



2)商場為使這種冰箱平均每天的銷售利潤達到5000元,則每臺冰箱的實際售價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖1,△ABC中,BA=BCD是平面內(nèi)不與A、B、C重合的任意一點,∠ABC=∠DBE,BD=BE

1)求證:△ABD≌△CBE

2)如圖2,當點D△ABC的外接圓圓心時,請判斷四邊形BDCE的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等邊三角形,DBC邊的中點,以D為頂點作一個120°的角,角的兩邊分別交直線AB,ACM,N兩點,以點D為中心旋轉(zhuǎn)∠MDN(MDN的度數(shù)不變),若DMAB垂直時(如圖①所示),易證BM +CN =BD.

1)如圖②,若DMAB不垂直時,點M在邊AB上,點N在邊AC上,上述結論是否成立?若成立,請給予證明;若不成立,請說明理由;

2)如圖③,若DMAB不垂直時,點M在邊AB.上,點N在邊AC的延長線上,上述結論是否成立?若不成立,請寫出BMCN,BD之間的數(shù)量關系,不用證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某隧道橫斷面由拋物線與矩形的三邊組成,尺寸如圖所示.

(1)以隧道橫斷面拋物線的頂點為原點,以拋物線的對稱軸為y軸,建立直角坐標系,求該拋物線對應的函數(shù)關系式;

(2)某卡車空車時能通過此隧道,現(xiàn)裝載一集裝箱箱寬3m,車與箱共高4.5m,此車能否通過隧道?并說明理由

查看答案和解析>>

同步練習冊答案