【題目】如圖,已知,在的角平分線上有一點,將一個角的頂點與點重合,它的兩條邊分別與射線相交于點.
(1)如圖1,當繞點旋轉(zhuǎn)到與垂直時,請猜想與的數(shù)量關(guān)系,并說明理由;
(2)當繞點旋轉(zhuǎn)到與不垂直時,到達圖2的位置,(1)中的結(jié)論是否成立?并說明理由;
(3)如圖3,當繞點旋轉(zhuǎn)到點位于的反向延長線上時,求線段與之間又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.
【答案】(1),見解析;(2)結(jié)論仍然成立,見解析;(3)
【解析】
(1)先判斷出∠OCE=60°,再利用特殊角的三角函數(shù)得出OD=OC,同OE=OC,即可得出結(jié)論;
(2)同(1)的方法得OF+OG=OC,再判斷出△CFD≌△CGE,得出DF=EG,最后等量代換即可得出結(jié)論;
(3)同(2)的方法即可得出結(jié)論.
解:(1)是的角平分線
在中,,
同理:
(2)(1)中結(jié)論仍然成立,理由:
過點作于,于
由(1)知,
,且點是的平分線上一點
(3)結(jié)論為:.
理由:過點C作CF⊥OA于F,CG⊥OB于G,
∴∠OFC=∠OGC=90°,
∵∠AOB=60°,
∴∠FCG=120°,
同(1)的方法得,OF=OC,OG=OC,
∴OF+OG=OC,
∵CF⊥OA,CG⊥OB,且點C是∠AOB的平分線OM上一點,
∴CF=CG,∵∠DCE=120°,∠FCG=120°,
∴∠DCF=∠ECG,
∴△CFD≌△CGE,
∴DF=EG,
∴OF=DFOD=EGOD,OG=OEEG,
∴OF+OG=EGOD+OEEG=OEOD,
∴OEOD=OC.
科目:初中數(shù)學 來源: 題型:
【題目】探究:(1)如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成一個“回形”正方形(如圖2),請你寫出、、ab之間的等量關(guān)系是______________;
(2)兩個邊長分別為a和b的正方形如圖放置(圖3),求出圖3中陰影部分的面積;
(3)若,,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC中,AB=AC.
(1)用尺規(guī)作出圓心在直線BC上,且過A、C兩點的⊙O;(注:保留作圖痕跡,標出點O,并寫出作法)
(2)若∠B=30°,求證:AB與(1)中所作⊙O相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個汽車零件制造車間可以生產(chǎn)甲,乙兩種零件,生產(chǎn)4個甲種零件和3個乙種零件共獲利120元;生產(chǎn)2個甲種零件和5個乙種零件共獲利130元.
(1)求生產(chǎn)1個甲種零件,1個乙種零件分別獲利多少元?
(2)若該汽車零件制造車間共有工人30名,每名工人每天可生產(chǎn)甲種零件6個或乙種零件5個,每名工人每天只能生產(chǎn)同一種零件,要使該車間每天生產(chǎn)的兩種零件所獲總利潤超過2800元,至少要派多少名工人去生產(chǎn)乙種零件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某報社為了解溫州市民對大范圍霧霾天氣的成因、影響以及應對措施的看法,做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個等級:A.非常了解:B.比較了解:C.基本了解;D.不了解.根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的三種統(tǒng)計圖表.請結(jié)合統(tǒng)計圖表,回答下列問題:
對霧霾的了解程度 | 百分比 | |
A | 非常了解 | 5% |
B | 比較了解 | m% |
C | 基本了解 | 45% |
D | 不了解 | n% |
(1)本次參與調(diào)查的市民共有________人,m=________,n=________.
(2)統(tǒng)計圖中扇形D的圓心角是________度.
(3)某校準備開展關(guān)于霧霾的知識競賽,九(3)班鄭老師欲從2名男生和1名女生中任選2人參加比賽,求恰好選中“1男1女”的概率(要求列表或畫樹狀圖).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與直線AB交于A(-4,-4),B(0,4)兩點,直線AC:y=-x-6交y軸與點C.點E是直線AB上的動點,過點E作EF⊥x軸交AC于點F,交拋物線于點G.
(1)求拋物線y=-x2+bx+c的表達式;
(2)連接GB、EO,當四邊形GEOB是平行四邊形時,求點G的坐標;
(3)①在y軸上存在一點H,連接EH、HF,當點E運動到什么位置時,以A、E、F、H為頂點的四邊形是矩形?求出此時點E、H的坐標;
②在①的前提下,以點E為圓心,EH長為半徑作圓,點M為⊙E上一動點,求AM+CM的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=25°,O為AB的中點. 將OA繞點O逆時針旋轉(zhuǎn)θ °至OP(0<θ<180),當△BCP恰為軸對稱圖形時,θ的值為_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與軸交于兩點,交軸于點對稱軸是直線.
(1)求拋物線的解析式及點的坐標;
(2)連接是線段上一點,點關(guān)于直線的對稱點正好落在上,求點的坐標;
(3)動點從點出發(fā),以每秒個單位長度的速度向點運動,到達點即停止運動.過點作軸的垂線交拋物線于點交線段于點.設(shè)運動時間為秒.
①連接,若與相似,請直接寫出的值;
②能否為等腰三角形.若能,求出的值;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com