如圖,C、D是線段AB上的兩點,E是AC的中點,F(xiàn)是BD的中點,若EF=8,CD=4,則AB的長為


  1. A.
    9
  2. B.
    10
  3. C.
    12
  4. D.
    16
C
分析:由已知條件可知,EC+FD=EF-CD=8-4=4,又因為E是AC的中點,F(xiàn)是BD的中點,則AE+FB=EC+FD,故AB=AE+FB+EF可求.
解答:由題意得,EC+FD=EF-CD=8-4=4,
∵E是AC的中點,F(xiàn)是BD的中點,
∴AE+FB=EC+FD=4,
∴AB=AE+FB+EF=4+8=12.
故選C.
點評:本題考查的是線段上兩點間的距離,解答此題時利用中點的性質轉化線段之間的倍分關系是解題的關鍵,在不同的情況下靈活選用它的不同表示方法,有利于解題的簡潔性.同時,靈活運用線段的和、差、倍、分轉化線段之間的數(shù)量關系也是十分關鍵的一點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知B是線段AC上的一點,M是線段AB的中點,N是線段AC的中點,P為NA的中點,Q是AM的中點,則MN:PQ等于( 。
精英家教網(wǎng)
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、如圖,C、D是線段AB上兩點,已知圖中所有線段的長度都是正整數(shù),且總和為29,則線段AB的長度是
9或8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,點C是線段AB上一動點,分別以線段AC、CB為邊,在線段AB的同側作正方形ACDE和等腰直角三角形BCF,∠BCF=90°,連接AF、BD.
(1)猜想線段AF與線段BD的數(shù)量關系和位置關系(不用證明).
(2)當點C在線段AB上方時,其它條件不變,如圖2,(1)中的結論是否成立?說明你的理由.
(3)在圖1的條件下,探究:當點C在線段AB上運動到什么位置時,直線AF垂直平分線段BD?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•石景山區(qū)一模)如圖,△ABC中,∠ACB=90°,AC=2,以AC為邊向右側作等邊三角形ACD.
(1)如圖1,將線段AB繞點A逆時針旋轉60°,得到線段AB1,聯(lián)結DB1,則與DB1長度相等的線段為
BC
BC
 (直接寫出結論);
(2)如圖2,若P是線段BC上任意一點(不與點C重合),點P繞點A逆時針旋轉60°得到點Q,求∠ADQ的度數(shù);
(3)畫圖并探究:若P是直線BC上任意一點(不與點C重合),點P繞點A逆時針旋轉60°得到點Q,是否存在點P,使得以A、C、Q、D、為頂點的四邊形是梯形,若存在,請指出點P的位置,并求出PC的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,C,D是線段AB上兩點,若CB=4cm,DB=7cm,且D是AC的中點,則AC=
6cm
6cm

查看答案和解析>>

同步練習冊答案