如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA、OC分別在x軸、y軸的正半軸上,OA=4,OC=2.點(diǎn)P從點(diǎn)O出發(fā),沿x軸以每秒1個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒.將線段CP的中點(diǎn)繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)90°得點(diǎn)D,點(diǎn)D隨點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng),連接DP、DA.

(1)請(qǐng)用含t的代數(shù)式表示出點(diǎn)D的坐標(biāo);
(2)求t為何值時(shí),△DPA的面積最大,最大為多少?
(3)在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,△DPA能否成為直角三角形?若能,求t的值.
若不能,請(qǐng)說明理由;
(4)請(qǐng)直接寫出隨著點(diǎn)P的運(yùn)動(dòng),點(diǎn)D運(yùn)動(dòng)路線的長.
(1)D坐標(biāo)為(t+1,);(2)當(dāng)t=2時(shí),△DPA的面積最大,最大值為1;(3)經(jīng)過2秒或3秒時(shí),△PAD是直角三角形;(4)點(diǎn)D運(yùn)動(dòng)路線的長為

試題分析:(1)設(shè)出P點(diǎn)坐標(biāo),再求出CP的中點(diǎn)坐標(biāo),根據(jù)相似的性質(zhì)即可求出D點(diǎn)坐標(biāo);
(2)根據(jù)題意求出△DPA的面積,分析函數(shù)解析式求出最值;
(3)先判斷出可能為直角的角,再根據(jù)勾股定理求解;
(4)根據(jù)點(diǎn)D的運(yùn)動(dòng)路線與OB平行且相等解答即可.
試題解析:(1)∵點(diǎn)P從點(diǎn)O出發(fā),沿x軸以每秒1個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動(dòng),
∴OP=t,而OC=2,
∴P(t,0),
設(shè)CP的中點(diǎn)為F,則F點(diǎn)的坐標(biāo)為(,1),
∴將線段CP的中點(diǎn)F繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)90°得點(diǎn)D,其坐標(biāo)為(t+1,);
(2)S=  
∴當(dāng)t=2時(shí),S最大,最大值為1
(3)∵∠CPD=900,∴∠DPA+∠CPO=900,∴∠DPA≠900,故有以下兩種情況:
①當(dāng)∠PDA=900時(shí),由勾股定理得,
,,
, 
,解得(不合題意,舍去)
②當(dāng)∠PAD=900時(shí),點(diǎn)D在BA上,故AE=3-t,得t=3
綜上,經(jīng)過2秒或3秒時(shí),△PAD是直角三角形;
(4)∵根據(jù)點(diǎn)D的運(yùn)動(dòng)路線與OB平行且相等,OB=,
∴點(diǎn)D運(yùn)動(dòng)路線的長為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)角?(0°<α<90°)得△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC,BC于D,F兩點(diǎn).(12分)

圖(a)                                     圖(b)
(1)如圖(a),觀察并猜想,在旋轉(zhuǎn)過程中,線段EA1與FC是怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(2)如圖(b),當(dāng)α=30°時(shí),試判斷四邊形BC1DA的形狀,并說明理由;
(3)在(2)的情況下,求ED的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,點(diǎn)F為BE中點(diǎn),連結(jié)DF、CF.
(1)如圖1,當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上,請(qǐng)直接寫出此時(shí)線段DF、CF的數(shù)量關(guān)系和位置關(guān)系(不用證明);
(2)如圖2,在(1)的條件下將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°時(shí),請(qǐng)你判斷此時(shí)(1)中的結(jié)論是否仍然成立,并證明你的判斷;
(3)如圖3,在(1)的條件下將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°時(shí),若AD=1,AC=,求此時(shí)線段CF的長(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

圖中所示的幾個(gè)圖形是國際通用的交通標(biāo)志,其中不是軸對(duì)稱圖形的是(     )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列美麗的圖案中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的個(gè)數(shù)是(    )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,點(diǎn)(2,﹣1)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是 _________ 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

把一個(gè)正五角星繞著中心旋轉(zhuǎn)到與原來重合,至少需要轉(zhuǎn)動(dòng)的度數(shù)是
A.36°;B.72°;C.108°;D.144°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列為中心對(duì)稱圖形的是(   )
A.三角形B.梯形C.正五邊形D.平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖六邊形ABCDEF是軸對(duì)稱圖形,CF所在的直線是它的對(duì)稱軸,若∠AFC+∠BCF=15°,則∠AFE+∠BCD的大小是(   )
A.150°B.300°C.210°D.330°

查看答案和解析>>

同步練習(xí)冊(cè)答案