A(4, -5)在第      象限,關(guān)于x軸對(duì)稱(chēng)點(diǎn)的坐標(biāo)是         . (每格1分)

 

【答案】

四,(4,5)

【解析】根據(jù)第四象限的點(diǎn)橫坐標(biāo)為正,縱坐標(biāo)為負(fù),

∴點(diǎn)A(4,-5)在第四象限,

根據(jù)平面直角坐標(biāo)系中關(guān)于x軸對(duì)稱(chēng)的點(diǎn),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù),

∴點(diǎn)A關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)是(4,5),

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•貴陽(yáng)模擬)閱讀下列材料:
已知點(diǎn)P的坐標(biāo)為(m,0),在x軸上存在點(diǎn)Q(不與P點(diǎn)重合),以PQ為邊作正方形PQMN,使點(diǎn)M落在反比例函數(shù)y=-
2x
的圖象上.小明對(duì)上述問(wèn)題進(jìn)行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形一定有兩個(gè),如圖所示,并且一個(gè)正方形的頂點(diǎn)M在第四象限,另一個(gè)正方形的頂點(diǎn)M1在第二象限.
(1)若P點(diǎn)坐標(biāo)為(1,0),請(qǐng)你寫(xiě)出:M的坐標(biāo)是
(2,-1)
(2,-1)
;
(2)若點(diǎn)P的坐標(biāo)為(m,0),求直線M1M的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正比例函數(shù)y=
1
2
x的圖象與反比例函數(shù)y=
k
x
(k≠0)在第一象限的圖象交于A點(diǎn),過(guò)A點(diǎn)作x軸的垂線,垂足為M,已知△AOM的面積為1,點(diǎn)B(-1,t)為反比例函數(shù)在第三象限圖象上的點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)試求出點(diǎn)A、點(diǎn)B的坐標(biāo);
(3)在y軸上求一點(diǎn)P,使|PA-PB|的值最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•懷柔區(qū)二模)已知拋物線y=x2+(2m-1)x+m2-1(m為常數(shù)).
(1)若拋物線y=x2+(2m-1)x+m2-1與x軸交于兩個(gè)不同的整數(shù)點(diǎn),求m的整數(shù)值;
(2)在(1)問(wèn)條件下,若拋物線頂點(diǎn)在第三象限,試確定拋物線的解析式;
(3)若點(diǎn)M(x1,y1)與點(diǎn)N(x1+k,y2)在(2)中拋物線上 (點(diǎn)M、N不重合),且y1=y2.求代數(shù)式x12
16k+1
+6x1+5-k
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•建寧縣質(zhì)檢)如圖:已知拋物線y=-
1
m
x2+(1-
2
m
)x+2
(m>0)與x軸相交于點(diǎn)B、C,與y軸相交于點(diǎn)A,且點(diǎn)B在點(diǎn)C的左側(cè).
(1)若該拋物線過(guò)點(diǎn)M(2,2),求這個(gè)拋物線的解析式;
(2)在(1)的條件下,請(qǐng)?jiān)诘谒南笙迌?nèi)的該拋物線上找到一點(diǎn)P,使△POC的面積等于△ABC面積的
4
3
,求出P點(diǎn)坐標(biāo);
(3)在(1)的條件下,請(qǐng)?jiān)趻佄锞的對(duì)稱(chēng)軸上找到一點(diǎn)H,使BH+AH最小,并求出H點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在正方形網(wǎng)格中建立如圖所示的坐標(biāo)系,每個(gè)小正方形的邊長(zhǎng)都為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)在圖中作出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1,并直接寫(xiě)出點(diǎn)A1的坐標(biāo)(要求:A與A1,B與B1,C與C1相對(duì)應(yīng));
(2)在第(1)題的結(jié)果下,連接AA1,BB1,求四邊形AA1B1B的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案