【題目】在四邊形ABCD中,E、F分別是邊BC、CD的中點,連接AE,AF.
(1)如圖1,若四邊形ABCD的面積為5,則四邊形AECF的面積為____________;
(2)如圖2,延長AE至G,使EG=AE,延長AF至H,使FH=AF,連接BG、GH、HD、DB.
求證:四邊形BGHD是平行四邊形;
(3)如圖3,對角線 AC、BD相交于點M, AE與BD交于點P, AF與BD交于點N. 直接寫出BP、PM、MN、ND的數(shù)量關系.
【答案】(1)(2)證明見解析(3).
【解析】
(1)連接AC,根據(jù)三角形中線把三角形分成兩個面積相等的三角形進行解答即可得;
(2)連接EF,根據(jù)三角形中位線定理可得到BD與GH平行且相等,由此即可得證;
(3)如圖,延長PE至點Q,使EQ=EP,連接CQ,延長NF至點O,使OF=NG,連接CO,通過證明△BPE≌△CQE可得BP=CQ,BP//CQ,同理:CO=ND,CO//ND,從而可得Q、C、O三點共線,繼而通過證明△APM∽△AQC,可得PM:CQ=AM:AC,同理:MN:CO=AM:AC,即可得答案.
(1)如圖,連接AC,則有S△ABC+S△ACD= S四邊形ABCD=5,
∵E、F分別為BC、CD中點,
∴S△AEC=S△ABC,S△AFC=S△ADC,
∴S四邊形AECF=S△AEC+S△AFC=S△ABC+S△ADC= S四邊形ABCD=,
故答案為:;
(2)如圖,連接EF,
∵E、F分別是BC,CD的中點,
∴EF∥BD,EF=BD.,
∵EG=AE,F(xiàn)H=AF,
∴EF∥GH,EF=GH.,
∴BD∥GH,BD=GH.,
∴四邊形BGHD是平行四邊形;
(3)如圖,延長PE至點Q,使EQ=EP,連接CQ,
延長NF至點O,使OF=NG,連接CO,
在△BPE和△CQE中
,
∴△BPE≌△CQE(SAS),
∴BP=CQ,∠PBE=∠QCE,
∴BP//CQ,
同理:CO=ND,CO//ND,
∴Q、C、O三點共線,
∴BD//OQ,
∴△APM∽△AQC,
∴PM:CQ=AM:AC,
同理:MN:CO=AM:AC,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形硬紙片ABCD中,,,,沿著對角線BD將平行四邊形剪開成兩個三角形,固定不動,將沿射線BD方向以每秒1個單位的速度勻速運動運動后記為連接和.
小明認為在運動過程中,始終有,你同意嗎?請說明理由.
保持上述條件不變,當運動______秒時,四邊形為菱形.
保持上述條件不變,當運動______秒時,四邊形為矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定向越野作為一種新興的運動項目,深受人們的喜愛. 這種定向運動是利用地圖和指北針到訪地圖上所指示的各個點標,以最短時間按序到達所有點標者為勝. 下面是我區(qū)某校進行定向越野活動中,中年男子組的成績(單位:分:秒).
9:01 14:45 9:46 19:22 11:20 18:47 11:40 12:32 11:52 13:45
22:27 15:00 17:30 13:22 18:34 10:45 19:24 16:26 21:33 15:31
19:50 14:27 15:55 16:07 20:43 12:13 21:41 14:57 11:39 12:45
12:57 15:31 13:20 14:50 14:57 9:41 12:13 14:27 12:25 12:38
例如,用時最少的趙老師的成績?yōu)?:01,表示趙老師的成績?yōu)?分1秒.
以下是根據(jù)某校進行定向越野活動中,中年男子組的成績中的數(shù)據(jù),繪制的統(tǒng)計圖表的一部分.
某校中年男子定向越野成績分段統(tǒng)計表
分組/分 | 頻數(shù) | 頻率 |
9≤x<11 | 4 | 0.1 |
11≤x<13 | b | 0.275 |
13≤x<15 | 9 | 0.225 |
15≤x<17 | 6 | d |
17≤x<19 | 3 | 0.075 |
19≤x<21 | 4 | 0.1 |
21≤x<23 | 3 | 0.075 |
合計 | a | c |
(1)這組數(shù)據(jù)的極差是____________;
(2)上表中的a =____________ ,b =____________ , c =____________, d =____________;
(3)補全頻數(shù)分布直方圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線l分別交x軸、y軸于A、B兩點,AB=5,OA:OB =3:4.
(1)求直線l的表達式;
(2)點P是軸上的點,點Q是第一象限內的點.若以A、B、P、Q為頂點的四邊形是菱形,請直接寫出Q點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是直線AB上一點,OC為任一條射線,OD平分∠AOC;OE平分∠BOC.
(1)圖中∠BOD的鄰補角為______;∠AOE的鄰補角為______.
(2)如果∠COD=25°,那么∠COE=______;如果∠COD=60°,那么∠COE=______;
(3)試猜想∠COD與∠COE具有怎樣的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為直線AB上一點,∠COE=90°,OF平分∠AOE.
(1)若∠COF=40°,求∠BOE的度數(shù).
(2)若∠COF=α(0°<α<90°),則∠BOE=______(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,點E,F(xiàn)分別在邊BC,AD上,且AF=CE.
(Ⅰ)如圖①,求證四邊形AECF是平行四邊形;
(Ⅱ)如圖②,若∠BAC=90°,且四邊形AECF是邊長為6的菱形,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,中原福塔(河南廣播電視塔)是世界第﹣高鋼塔.小明所在的課外活動小組在距地面268米高的室外觀光層的點D處,測得地面上點B的俯角α為45°,點D到AO的距離DG為10米;從地面上的點B沿BO方向走50米到達點C處,測得塔尖A的仰角β為60°.請你根據(jù)以上數(shù)據(jù)計算塔高AO,并求出計算結果與實際塔高388米之間的誤差.(參考數(shù)據(jù): ≈1.732, ≈1.414.結果精確到0.1米)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com