【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線l分別交x軸、y軸于A、B兩點(diǎn),AB=5,OA:OB =3:4.
(1)求直線l的表達(dá)式;
(2)點(diǎn)P是軸上的點(diǎn),點(diǎn)Q是第一象限內(nèi)的點(diǎn).若以A、B、P、Q為頂點(diǎn)的四邊形是菱形,請直接寫出Q點(diǎn)的坐標(biāo).
【答案】(1)y=+4 (2)(3,5)或(3,)
【解析】
(1)首先根據(jù)已知條件以及勾股定理求得OA、OB的長度,即求得A、B的坐標(biāo),利用待定系數(shù)法即可求解;
(2)分P在B點(diǎn)的上邊和在B的下邊兩種情況畫出圖形進(jìn)行討論,求得Q的坐標(biāo).
(1)∵OA:OB=3:4,AB=5,
∴根據(jù)勾股定理,得OA=3,OB=4,
∵點(diǎn)A、B在x軸、y軸上,
∴A(3,0),B(0,4),
設(shè)直線l表達(dá)式為y=kx+b(k≠0),
∵直線l過點(diǎn)A(3,0),點(diǎn)B(0,4),
∴ ,
解得 ,
∴直線l的表達(dá)式為y=+4;
(2)如圖,當(dāng)四邊形BP1AQ1是菱形時,則有BP1=AP1=AQ1,
則有OP1=4-BP1,
在Rt△AOP1中,有AP12=OP12+AO2,
即AQ12=(4-AQ1)2+32,
解得:AQ1=,所以Q1的坐標(biāo)為(3,);
當(dāng)四邊形BP2Q2A是菱形時,則有BP2 =AQ2=AB=5,
所以Q2的坐標(biāo)為(3,5),
綜上所述,Q點(diǎn)的坐標(biāo)是(3,5)或(3,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,直線EF分別交兩直角邊AB、BC與E、F兩點(diǎn),且EF∥AC,P是斜邊AC的中點(diǎn),連接PE,PF,且AB= ,BC= .
(1)當(dāng)E、F均為兩直角邊的中點(diǎn)時,求證:四邊形EPFB是矩形,并求出此時EF的長;
(2)設(shè)EF的長度為x(x>0),當(dāng)∠EPF=∠A時,用含x的代數(shù)式表示EP的長;
(3)設(shè)△PEF的面積為S,則當(dāng)EF為多少時,S有最大值,并求出該最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的直徑,且CD=2cm,點(diǎn)P為CD的延長線上一點(diǎn),過點(diǎn)P作⊙O的切線PA,PB,切點(diǎn)分別為點(diǎn)A,B.
(1)連接AC,若∠APO=30°,試證明△ACP是等腰三角形;
(2)填空: ①當(dāng)DP=cm時,四邊形AOBD是菱形;
②當(dāng)DP=cm時,四邊形AOBP是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(5,0)兩點(diǎn),直線y=﹣ x+3與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)P是x軸上方的拋物線上一動點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)若PE=5EF,求m的值;
(3)若點(diǎn)E′是點(diǎn)E關(guān)于直線PC的對稱點(diǎn),是否存在點(diǎn)P,使點(diǎn)E′落在y軸上?若存在,請直接寫出相應(yīng)的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列方程,屬于一元一次方程的有( 。
①x﹣2=;②0.5x=1;③=8x﹣1;④x2﹣4x=8;⑤x=0;⑥x+2y=0.
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,E、F分別是邊BC、CD的中點(diǎn),連接AE,AF.
(1)如圖1,若四邊形ABCD的面積為5,則四邊形AECF的面積為____________;
(2)如圖2,延長AE至G,使EG=AE,延長AF至H,使FH=AF,連接BG、GH、HD、DB.
求證:四邊形BGHD是平行四邊形;
(3)如圖3,對角線 AC、BD相交于點(diǎn)M, AE與BD交于點(diǎn)P, AF與BD交于點(diǎn)N. 直接寫出BP、PM、MN、ND的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB是∠AOC的余角,∠AOD是∠AOC的補(bǔ)角,且∠BOD=2∠BOC,求∠BOD、∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點(diǎn)A為圓心,小于AC的長為半徑畫弧,分別交AB、AC于點(diǎn)E、F;②分別以點(diǎn)E、F為圓心,大于 EF的長為半徑畫弧,兩弧相交于點(diǎn)G;③作射線AG交BC邊于點(diǎn)D.則∠ADC的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=2 ,點(diǎn)E是BC邊的中點(diǎn),△DEF是等邊三角形,DF交AB于點(diǎn)G,則△BFG的周長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com