已知:直角坐標(biāo)平面內(nèi)有點(diǎn),過原點(diǎn)的直線,且與過點(diǎn)、的拋物線相交于第一象限的點(diǎn),若

(1)求拋物線的解析式;

(2)作軸于點(diǎn),設(shè)有直線交直線,交拋物線于點(diǎn),若、、組成的四邊形是平行四邊形,求的值。

 

【答案】

(1)解:過點(diǎn)A作AH⊥x軸于點(diǎn)H,過點(diǎn)B作BC⊥x軸于點(diǎn)C,

由點(diǎn)A(-1,2)可得  AH=2,OH=1

由直線OB⊥OA,可得△AHO∽△OCB,

         ∴ ,

∵OB=2OA,∴OC=4,BC=2 ,∴B(4,2)   

設(shè)經(jīng)過點(diǎn)A、O、B的拋物線解析式為

∴  )

解得,   ∴拋物線解析式為:    

(2)設(shè)直線l的解析式為

∵ 直線l經(jīng)過點(diǎn)B(4,2),  ∴  直線l的解析式為

∵ 直線x=m(m>0)交直線l于,交拋物線于點(diǎn)Q,

∴ 設(shè)P點(diǎn)坐標(biāo)為(m,m),點(diǎn)Q坐標(biāo)為(m,),

∵由B、C、P、Q四點(diǎn)組成的四邊形是平行四邊形,∴ PQ//BC且PQ=BC

即: ,

解得,  ∵ m>0   ∴或2

【解析】(1)過點(diǎn)A作AH⊥x軸于點(diǎn)H,過點(diǎn)B作BC⊥x軸于點(diǎn)C,根據(jù)點(diǎn)A的坐標(biāo)可得出AH及OH的長度,再由△AHO∽△OCB及OB=2OA可求出點(diǎn)B的坐標(biāo),利用待定系數(shù)法可求出函數(shù)解析式.

(2)先求出直線l的解析式,然后根據(jù)B、C、P、Q組成的四邊形是平行四邊形,結(jié)合題意可得PQ=BC,建立方程求解即可得出m的值.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在直角坐標(biāo)平面內(nèi),點(diǎn)A的坐標(biāo)為(3,0),第一象限內(nèi)的點(diǎn)P在直線y=2x上,∠PAO=45度.精英家教網(wǎng)
(1)求點(diǎn)P的坐標(biāo);
(2)如果二次函數(shù)的圖象經(jīng)過P、O、A三點(diǎn),求這個(gè)二次函數(shù)的解析式,并寫出它的圖象的頂點(diǎn)坐標(biāo)M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點(diǎn)落在直線y=2x上的點(diǎn)Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•奉賢區(qū)二模)已知:直角坐標(biāo)平面內(nèi)有點(diǎn)A(-1,2),過原點(diǎn)O的直線l⊥OA,且與過點(diǎn)A、O的拋物線相交于第一象限的B點(diǎn),若OB=2OA.
(1)求拋物線的解析式;
(2)作BC⊥x軸于點(diǎn)C,設(shè)有直線x=m(m>0)交直線l于P,交拋物線于點(diǎn)Q,若B、C、P、Q組成的四邊形是平行四邊形,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在直角坐標(biāo)平面內(nèi)有雙曲線y=
6
3
x
,另有△ABC,其中點(diǎn)A、B、C的坐標(biāo)分別是A(-2
2
3
6
2
),B(-2
2
,0),C(0,
3
6
2
).
(1)如果將△ABC沿x軸翻折后得到對應(yīng)的△A1B1C1 (其中點(diǎn)A、B、C的對應(yīng)點(diǎn)分別是點(diǎn)A1、B1、C1),問:△A1B1C1的三個(gè)頂點(diǎn)中,有無在雙曲線y=
6
3
x
上的點(diǎn)?若有,寫出這個(gè)點(diǎn)的坐標(biāo).
(2)如果將△ABC沿x軸正方向平移a個(gè)單位后,使△ABC的一個(gè)頂點(diǎn)落在雙曲線y=
6
3
x
上,請直接寫出a的值.
(3)如果△ABC關(guān)于原點(diǎn)O的對稱的三角形△A2B2C2(其中點(diǎn)A、B、C的對應(yīng)點(diǎn)分別是點(diǎn)A2、B2、C2),請寫出經(jīng)過點(diǎn)A、A2的直線所表示的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知在直角坐標(biāo)平面內(nèi),點(diǎn)A的坐標(biāo)為(3,0),第一象限內(nèi)的點(diǎn)P在直線y=2x上,∠PAO=45度.
(1)求點(diǎn)P的坐標(biāo);
(2)如果二次函數(shù)的圖象經(jīng)過P、O、A三點(diǎn),求這個(gè)二次函數(shù)的解析式,并寫出它的圖象的頂點(diǎn)坐標(biāo)M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點(diǎn)落在直線y=2x上的點(diǎn)Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,已知在直角坐標(biāo)平面內(nèi),點(diǎn)A的坐標(biāo)為(3,0),第一象限內(nèi)的點(diǎn)P在直線y=2x上,∠PAO=45度.
(1)求點(diǎn)P的坐標(biāo);
(2)如果二次函數(shù)的圖象經(jīng)過P、O、A三點(diǎn),求這個(gè)二次函數(shù)的解析式,并寫出它的圖象的頂點(diǎn)坐標(biāo)M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點(diǎn)落在直線y=2x上的點(diǎn)Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

同步練習(xí)冊答案