精英家教網 > 初中數學 > 題目詳情

【題目】如圖,有一塊長(3a+b)米,寬(2a+b)米的長方形廣場,園林部門要對陰影區(qū)城進行綠化,空白區(qū)城進行廣場硬化,陰影部分是邊長為(a+b)米的正方形.

1)計算廣場上需要硬化部分的面積;

2)若a30,b10,求硬化部分的面積.

【答案】1)廣場上需要硬化部分的面積是(5a2+3abm2;(2)廣場上需要硬化部分的面積是5400m2

【解析】

1)由題意可知空白部分的面積=長方形的面積﹣陰影部分的面積.長方形的面積是長×寬,即(3a+b)(2a+b);陰影部分是正方形,其面積是(a+b2,所以空白部分的面積是(2a+b)(3a+b)﹣(a+b2;

2)將a,b的數值代入(1)題中的代數式求值即可.

解:(1)根據題意,廣場上需要硬化部分的面積是

2a+b)(3a+b)﹣(a+b2

6a2+2ab+3ab+b2﹣(a+b2

6a2+5ab+b2﹣(a2+2ab+b2

6a2+5ab+b2a22abb2

5a2+3ab

答:廣場上需要硬化部分的面積是(5a2+3abm2

2)把a30,b10代入

5a2+3ab5×302+3×30×105400 m2

答:廣場上需要硬化部分的面積是5400m2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,關于點的圖象變化有以下說法:

①點關于軸的對稱點的坐標為

②點與點關于原點對稱

③把點先向右平移個單位長度,再向下平移個單位長度得到點

④把點繞原點順時針旋轉,得到點

其中,正確的說法是(

A. ①③④ B. ①②③④ C. ①②③ D. ②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,我省在修建泛亞鐵路時遇到一座山,要從地向地修一條隧道(,在同一水平面上),為了測量,兩地之間的距離,某工程師乘坐熱氣球從地出發(fā)垂直上升米到達處,在處觀察地的俯角為,然后保持同一高度向前平移米到達處,在處觀察地的俯角為,則、兩地之間的距離為多少米?(參考數據:;結果保留整數)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(本小題滿分10分)

如圖,臺風中心位于點P,并沿東北方向PQ移動,已知臺風移動的速度為30千米/時,受影響區(qū)域的半徑為200千米,B市位于點P的北偏東75°方向上,距離點P 320千米處.

(1) 說明本次臺風會影響B市;

2求這次臺風影響B市的時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,小黃站在河岸上的點,看見河里有一小船沿垂直于岸邊的方向劃過來.此時,測得小船的俯角是,若小黃的眼睛與地面的距離米,米,平行于所在的直線,迎水坡的坡度為,坡長米,則此時小船到岸邊的距離的長為( )米.(,結果保留兩位有效數字)

A. 11 B. 8.5 C. 7.2 D. 10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一艘船以每小時海里的速度向西南方向航行,在處觀測燈塔在船的南偏西的方向,航行分鐘后到達處,這時燈塔恰好在船的正西方向.已知距離此燈塔海里以內的海區(qū)有暗礁,這艘船繼續(xù)沿西南方向航行是否有觸礁的危險?為什么?(參考數據:,

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,點A的坐標為(1,0),以線段OA為邊在第四象限內作等邊△ABC,點C為x軸正半軸上一動點(OC>10,連接BC,以線段BC為邊在第四象限內作等邊△CBD,直線DA交y軸于點E.下列結論正確的有( )個

(1)OBC≌△ABD;(2)E的位置不隨著點C位置的變化而變化,點E的坐標是(0,) ;(3)DAC的度數隨著點C位置的變化而改變;(4)當點C的坐標為(m,0)(m1)時,四邊形ABDC的面積Sm的函數關系式為.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,對稱軸為直線x=2的拋物線經過點A-1,0),C0,5)兩點,與x軸另一交點為B,已知M0,1),Ea,0),Fa+1,0),點P是第一象限內的拋物線上的動點.

1)求此拋物線的解析式;

2)當a=1時,求四邊形MEFP面積的最大值,并求此時點P的坐標;

3)若△PCM是以點P為頂點的等腰三角形,求a為何值時,四邊形PMEF周長最?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠ACB=90°,AC=BC,點C(1,2)、A(-2,0),則點B的坐標是__________.

查看答案和解析>>

同步練習冊答案