【題目】如圖,在平面直角坐標(biāo)系中,l是經(jīng)過A2,0),B0b)兩點的直線,且b0,點C的坐標(biāo)為(2,0),當(dāng)點B移動時,過點CCDl交于點D

1)求點D,O之間的距離;

2)當(dāng)tanCDO=時,求直線l的解析式;

3)在(2)的條件下,直接寫出△ACD與△AOB重疊部分的面積.

【答案】12;(2;(3

【解析】

1)直接利用直角三角形斜邊中線的性質(zhì)即可得出答案;

2)通過等量代換得出,進(jìn)而求出點B的坐標(biāo),然后利用待定系數(shù)法求解即可;

3)先通過正切和勾股定理求出OE,AD,CD的長度,然后利用即可求解.

解:(1)連接OD

,

,

,

;

2

,

,

,

,

設(shè)直線l的解析式為,

代入解析式中得

解得,

∴直線l解析式為

3)設(shè)CDy軸的交點為E,

,

,

ACDAOB重疊部分的面積為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:為等邊三角形.

1)求作:的外接圓(不寫作法,保留作圖痕跡)

2)射線于點,交于點,過的切線,與的延長線交于點

根據(jù)題意,將(1)中圖形補(bǔ)全;

②求證:;

③若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線yx22mx+m4x軸交于點A,B(點A在點B的左側(cè)),與y軸交于點C0,﹣3).

1)求m的值;

2)若一次函數(shù)ykx+5k≠0)的圖象經(jīng)過點A,求k的值;

3)將二次函數(shù)的圖象在點B,C間的部分(含點B和點C)向左平移nn0)個單位后得到的圖象記為G,同時將(2)中得到的直線ykx+5k≠0)向上平移n個單位,當(dāng)平移后的直線與圖象G有公共點時,請結(jié)合圖象直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果四邊形有一組對邊平行,且另一組對邊不平行,那么稱這樣的四邊形為梯形,若梯形中有一個角是直角,則稱其為直角梯形.下面四個結(jié)論中:

①存在無數(shù)個直角梯形,其四個頂點分別在同一個正方形的四條邊上;

②存在無數(shù)個直角梯形,其四個頂點在同一條拋物線上;

③存在無數(shù)個直角梯形,其四個頂點在同一個反比例函數(shù)的圖象上;

④至少存在一個直角梯形,其四個頂點在同一個圓上.

所有正確結(jié)論的序號是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知MONA為射線OM上一定點,OA=5B為射線ON上一動點,連接AB,滿足OAB,OBA均為銳角.點C在線段OB上(與點OB不重合),滿足AC=AB,點C關(guān)于直線OM的對稱點為D,連接ADOD

1)依題意補(bǔ)全圖1;

2)求BAD的度數(shù)(用含α的代數(shù)式表示);

3)若tanα=,點POA的延長線上,滿足AP=OC,連接BP,寫出一個AB的值,使得BPOD,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD內(nèi),將兩張邊長分別為abab)的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),矩形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖2中陰影部分的周長與圖1中陰影部分的周長的差為l,若要知道l的值,只要測量圖中哪條線段的長( 。

A.aB.bC.ADD.AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明星期天上午800從家出發(fā)到離家36千米的書城買書,他先從家出發(fā)騎公共自行車到公交車站,等了12分鐘的車,然后乘公交車于948分到達(dá)書城(假設(shè)在整個過程中小明騎車的速度不變,公交車勻速行駛,小明家、公交車站、書城依次在一條筆直的公路旁).如圖是小明從家出發(fā)離公交車站的路程y(千米)與他從家出發(fā)的時間x(時)之間的函數(shù)圖象,其中線段AB對應(yīng)的函教表達(dá)式為ykx+6

1)求小明騎公共自行車的速度;

2)求線段CD對應(yīng)的函數(shù)表達(dá)式;

3)求出發(fā)時間x在什么范圍時,小明離公交車站的路程不超過3千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線lyx+bx軸交于點A(﹣20),與y軸交于點B.雙曲線y與直線l交于PQ兩點,其中點P的縱坐標(biāo)大于點Q的縱坐標(biāo)

1)求點B的坐標(biāo);

2)當(dāng)點P的橫坐標(biāo)為2時,求k的值;

3)連接PO,記POB的面積為S.若,結(jié)合函數(shù)圖象,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線,點在直線上,以點為圓心,適當(dāng)長度為半徑畫弧,分別交直線,,兩點,以點為圓心,長為半徑畫弧,與前弧交于點(不與點重合),連接,,,,其中于點.若,則下列結(jié)論錯誤的是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案