(2010•密云縣)如圖,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.動點M從B點出發(fā)沿線段BC以每秒2個單位長度的速度向終點C運動;動點N同時從C點出發(fā)沿線段CD以每秒1個單位長度的速度向終點D運動.設(shè)運動的時間為t秒.
(1)求BC的長;
(2)當MN∥AB時,求t的值;
(3)試探究:t為何值時,△MNC為等腰三角形.

【答案】分析:(1)作梯形的兩條高,根據(jù)直角三角形的性質(zhì)和矩形的性質(zhì)求解;
(2)平移梯形的一腰,根據(jù)平行四邊形的性質(zhì)和相似三角形的性質(zhì)求解;
(3)因為三邊中,每兩條邊都有相等的可能,所以應(yīng)考慮三種情況.結(jié)合路程=速度×時間求得其中的有關(guān)的邊,運用等腰三角形的性質(zhì)和解直角三角形的知識求解.
解答:解:(1)如圖①,過A、D分別作AK⊥BC于K,DH⊥BC于H,則四邊形ADHK是矩形.
∴KH=AD=3.
在Rt△ABK中,AK=AB•sin45°=4=4BK=AB•cos45°=4=4.
在Rt△CDH中,由勾股定理得,HC==3.
∴BC=BK+KH+HC=4+3+3=10.

(2)如圖②,過D作DG∥AB交BC于G點,則四邊形ADGB是平行四邊形.
∵MN∥AB,
∴MN∥DG.
∴BG=AD=3.
∴GC=10-3=7.
由題意知,當M、N運動到t秒時,CN=t,CM=10-2t.
∵DG∥MN,
∴∠NMC=∠DGC.
又∠C=∠C,
∴△MNC∽△GDC.


解得,

(3)分三種情況討論:
①當NC=MC時,如圖③,即t=10-2t,


②當MN=NC時,如圖④,過N作NE⊥MC于E.
解法一:
由等腰三角形三線合一性質(zhì)得
EC=MC=(10-2t)=5-t.
在Rt△CEN中,cosC==,
又在Rt△DHC中,cosC=,

解得t=
解法二:
∵∠C=∠C,∠DHC=∠NEC=90°,
∴△NEC∽△DHC.
,

∴t=
③當MN=MC時,如圖⑤,過M作MF⊥CN于F點.FC=NC=t.
解法一:(方法同②中解法一)
解得
解法二:
∵∠C=∠C,∠MFC=∠DHC=90°,
∴△MFC∽△DHC.
,


綜上所述,當t=、t=或t=時,△MNC為等腰三角形.
點評:注意梯形中常見的輔助線:平移一腰、作兩條高.構(gòu)造等腰三角形的時候的題目,注意分情況討論.此題的知識綜合性較強,能夠從中發(fā)現(xiàn)平行四邊形、等腰三角形等,根據(jù)它們的性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•密云縣)如圖,將腰長為的等腰Rt△ABC(∠C是直角)放在平面直角坐標系中的第二象限,其中點A在y軸上,點B在拋物線y=ax2+ax-2上,點C的坐標為(-1,0).
(1)點A的坐標為______,點B的坐標為______;
(2)拋物線的關(guān)系式為______,其頂點坐標為______;
(3)將三角板ABC繞頂點A逆時針方向旋轉(zhuǎn)90°,到達△AB′C′的位置.請判斷點B′、C′是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2010•密云縣)已知一次函數(shù)y=kx-3的圖象經(jīng)過點M(-2,1),求此圖象與x、y軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市密云縣中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•密云縣)如圖,將腰長為的等腰Rt△ABC(∠C是直角)放在平面直角坐標系中的第二象限,其中點A在y軸上,點B在拋物線y=ax2+ax-2上,點C的坐標為(-1,0).
(1)點A的坐標為______,點B的坐標為______;
(2)拋物線的關(guān)系式為______,其頂點坐標為______;
(3)將三角板ABC繞頂點A逆時針方向旋轉(zhuǎn)90°,到達△AB′C′的位置.請判斷點B′、C′是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市密云縣中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•密云縣)已知一次函數(shù)y=kx-3的圖象經(jīng)過點M(-2,1),求此圖象與x、y軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市密云縣中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•密云縣二模)已知拋物線y=x2-4x+1,將此拋物線沿x軸方向向左平移4個單位長度,得到一條新的拋物線.
(1)求平移后的拋物線解析式;
(2)由拋物線對稱軸知識我們已經(jīng)知道:直線x=m,即為過點(m,0)平行于y軸的直線,類似地,直線y=m,即為過點(0,m)平行于x軸的直線、請結(jié)合圖象回答:當直線y=m與這兩條拋物線有且只有四個交點,實數(shù)m的取值范圍;
(3)若將已知的拋物線解析式改為y=x2+bx+c(b<0),并將此拋物線沿x軸向左平移-b個單位長度,試回答(2)中的問題.

查看答案和解析>>

同步練習(xí)冊答案