【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,點A為切點,BP與⊙O交于點C,點D是AP的中點,連結(jié)CD.
(1)求證:CD是⊙O的切線;
(2)若AB=2,∠P=30°,求陰影部分的面積.
【答案】(1)證明見解析;(2).
【解析】
(1)連結(jié)OC,AC,由圓周角定理和切線的性質(zhì)得出∠ABP=90°,∠ACP=90°,由直角三角形斜邊上的中線性質(zhì)得出DC=AP=DA,由等腰三角形的性質(zhì)得出∠DAC=∠DCA,∠OAC=∠OCA,證出∠OCD=90°,即可得出結(jié)論;
(2)由含30°角的直角三角形的性質(zhì)得出BP=2AB=4,由勾股定理求出AP,再由直角三角形斜邊上的中線性質(zhì)得出CD的長即可.
(1)連結(jié)OC,AC,如圖所示:
∵AB是⊙O的直徑,AP是切線,
∴∠BAP=90°,∠ACP=90°,
∵點D是AP的中點,
∴DC═AP=DA,
∴∠DAC=∠DCA,
又∵OA=OC,
∴∠OAC=∠OCA,
∴∠OCD=∠OCA+∠DCA=∠OAC+∠DAC=90°,
即OC⊥CD,
∴CD是⊙O的切線;
(2)∵在Rt△ABP中,∠P=30°,
∴∠B=60°,
∴∠AOC=120°,
∴OA=1,BP=2AB=4,,
∴=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△APB中,AB=2,∠APB=90°,在AB的同側(cè)作正△ABD、正△APE和正△BPC,則四邊形PCDE面積的最大值是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,△ADE的頂點D,E分別在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,則∠EDC的度數(shù)為( )
A. 17.5° B. 12.5° C. 12° D. 10°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)某中學(xué)九年級學(xué)生在學(xué)習(xí)“直角三角形的邊角關(guān)系”時,組織開展測量物體高度的實踐活動.在活動中,某小組為了測量校園內(nèi)①號樓AB的高度(如圖),站在②號樓的C處,測得①號樓頂部A的仰角α=30°,底部B的俯角β=45°.已知兩幢樓的水平距離BD為18米,求①號樓AB的高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)y=3x與反比例函數(shù)y=的圖象交于A,B兩點,點A的橫坐標(biāo)為2,AC⊥x軸,垂足為C,連接BC.
(1)求反比例函數(shù)的表達(dá)式;
(2)求△ABC的面積;
(3)若點P是反比例函數(shù)y=圖象上的一點,△OPC與△ABC面積相等,請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)如圖,中,,,我們可以利用與相似證明,這個結(jié)論我們稱之為射影定理,試證明這個定理;
(結(jié)論運用)如圖,正方形的邊長為,點是對角線、的交點,點在上,過點作,垂足為,連接,
(1)試?yán)蒙溆岸ɡ碜C明;
(2)若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】星期天,小明和爸爸去大劇院看電影.爸爸步行先走,小明在爸爸離開家一段時間后騎自行車去,兩人按相同的路線前往大劇院,他們所走的路程(米)和時間(分)的關(guān)系如圖所示,則小明追上爸爸時,爸爸共走了_____________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,直線a,b,c分別通過A、D、C三點,且a∥b∥c.若a與b之間的距離是5,b與c之間的距離是7,則正方形ABCD的面積是( 。
A.70B.74C.144D.148
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com