【題目】如圖,A、B是⊙O上的兩個定點,P是⊙O上的動點(P不與A、B重合)、我們稱∠APB是⊙O上關(guān)于點A、B的滑動角.
(1)已知∠APB是⊙O上關(guān)于點A、B的滑動角, ①若AB是⊙O的直徑,則∠APB=°;②若⊙O的半徑是1,AB= ,求∠APB的度數(shù);
(2)已知O2是⊙O1外一點,以O(shè)2為圓心作一個圓與⊙O1相交于A、B兩點,∠APB是⊙O1上關(guān)于點A、B的滑動角,直線PA、PB分別交⊙O2于M、N(點M與點A、點N與點B均不重合),連接AN,試探索∠APB與∠MAN、∠ANB之間的數(shù)量關(guān)系.
【答案】
(1)90;45°或135°
(2)解:根據(jù)點P在⊙O1上的位置分為以下四種情況.
第一種情況:點P在⊙O2外,且點A在點P與點M之間,點B在點P與點N之間,如圖①
∵∠MAN=∠APB+∠ANB,
∴∠APB=∠MAN﹣∠ANB;
第二種情況:點P在⊙O2外,且點A在點P與點M之間,點N在點P與點B之間,如圖②.
∵∠MAN=∠APB+∠ANP=∠APB+(180°﹣∠ANB),
∴∠APB=∠MAN+∠ANB﹣180°;
第三種情況:點P在⊙O2外,且點M在點P與點A之間,點B在點P與點N之間,如圖③.
∵∠APB+∠ANB+∠MAN=180°,
∴∠APB=180°﹣∠MAN﹣∠ANB,
第四種情況:點P在⊙O2內(nèi),如圖④,
∠APB=∠MAN+∠ANB
【解析】解:(1)①若AB是⊙O的直徑,則∠APB=90. ②解:如圖,連接AB、OA、OB.
在△AOB中,
∵OA=OB=1.AB= ,
∴ + = .
∴∠AOB=90°.
當(dāng)點P在優(yōu)弧 上時,∠APB= ∠AOB=45°;
當(dāng)點P在劣弧 上時,∠AP′B= (360°﹣∠AOB)=135°
【考點精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對垂徑定理的理解,了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)如圖1,在△ABC中,BA=BC,D,E是AC邊上的兩點,且滿足∠DBE= ∠ABC(0°<∠CBE<∠ ABC).以點B為旋轉(zhuǎn)中心,將△BEC按逆時針旋轉(zhuǎn)∠ABC,得到△BE′A(點C與點A重合,點E到點E′處)連接DE′, 求證:DE′=DE.
(2)如圖2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC邊上的兩點,且滿足∠DBE= ∠ABC(0°<∠CBE<45°). 求證:DE2=AD2+EC2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)悉,2013年財政部核定海南省發(fā)行的60億地方政府“債券資金”,全部用于交通等重大項目建設(shè).以下是60億“債券資金”分配統(tǒng)計圖:
(1)請將條形統(tǒng)計圖補充完整;
(2)在扇形統(tǒng)計圖中,a= , b=(都精確到0.1);
(3)在扇形統(tǒng)計圖中,“教育文化”對應(yīng)的扇形圓心角的度數(shù)為°(精確到1°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形紙片ABCD中,∠A=60°,將紙片折疊,點A、D分別落在點A′、D′處,且A′D′經(jīng)過點B,EF為折痕,當(dāng)D′F⊥CD時, 的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB=DC,對角線AC、BD交于點O,AC⊥BD,E、F、G、H分別是AB、BC、CD、DA的中點.
(1)求證:四邊形EFGH是正方形;
(2)若AD=2,BC=4,求四邊形EFGH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年我市體育中考的現(xiàn)場選測項目中有一項是“排球30秒對墻墊球”,為了了解某學(xué)校九年級學(xué)生此項目平時的訓(xùn)練情況,隨機抽取了該校部分九年級學(xué)生進行測試,根據(jù)測試結(jié)果,制作了如下尚不完整的頻數(shù)分布表:
組別 | 墊球個數(shù)x(個) | 頻數(shù)(人數(shù)) | 頻率 |
1 | 10≤x<20 | 5 | 0.10 |
2 | 20≤x<30 | a | 0.18 |
3 | 30≤x<40 | 20 | b |
4 | 40≤x<50 | 16 | 0.32 |
合計 | 1 |
(1)表中a= , b=;
(2)這個樣本數(shù)據(jù)的中位數(shù)在第組;
(3)下表為≤體育與健康≥中考察“排球30秒對墻墊球”的中考評分標(biāo)準(zhǔn),若該校九年級有500名學(xué)生,請你估計該校九年級學(xué)生在這一項目中得分在7分以上(包括7分)學(xué)生約有多少人? 排球30秒對墻墊球的中考評分標(biāo)準(zhǔn)
分值 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
排球(個) | 40 | 36 | 33 | 30 | 27 | 23 | 19 | 15 | 11 | 7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,
問題1:如圖1,P為AB邊上的一點,以PD,PC為邊作平行四邊形PCQD,請問對角線PQ,DC的長能否相等,為什么?
問題2:如圖2,若P為AB邊上一點,以PD,PC為邊作平行四邊形PCQD,請問對角線PQ的長是否存在最小值?如果存在,請求出最小值,如果不存在,請說明理由.
問題3:若P為AB邊上任意一點,延長PD到E,使DE=PD,再以PE,PC為邊作平行四邊形PCQE,請?zhí)骄繉蔷PQ的長是否也存在最小值?如果存在,請求出最小值,如果不存在,請說明理由.
問題4:如圖3,若P為DC邊上任意一點,延長PA到E,使AE=nPA(n為常數(shù)),以PE、PB為邊作平行四邊形PBQE,請?zhí)骄繉蔷PQ的長是否也存在最小值?如果存在,請求出最小值,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有白、紅、黑三種顏色的小球,其中白球2只,紅球1只,黑球1只,它們除了顏色之外沒有其它區(qū)別,從袋中隨機地摸出1只球,記錄下顏色后放回攪勻,再摸出第二只球并記錄顏色,求兩次都摸出白球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com