某商場(chǎng)購進(jìn)一種單價(jià)為40元的籃球,如果以單價(jià)50元售出,那么每月可售出500個(gè),根據(jù)銷售經(jīng)驗(yàn),銷售單價(jià)每提高1元,銷售量相應(yīng)減少10個(gè).
(1)設(shè)銷售單價(jià)提高x元(x為正整數(shù)),寫出每月銷售量y(個(gè))與x(元)之間的函數(shù)關(guān)系式;
(2)假設(shè)這種籃球每月的銷售利潤為w元,試寫出w與x之間的函數(shù)關(guān)系式,并通過配方討論,當(dāng)銷售單價(jià)定為多少元時(shí),每月銷售這種籃球的利潤最大,最大利潤為多少元?

(1);(2),定價(jià)70元時(shí),最大利潤為9000元.

解析試題分析:(1)用原來的銷售量去掉隨著銷售單價(jià)提高而減少的銷售量就可得出函數(shù)關(guān)系式;
(2)根據(jù)銷售利潤是銷售量與銷售一個(gè)獲得利潤的乘積,建立二次函數(shù),進(jìn)一步用配方法解決求最大值問題.
試題解析:(1)由題意得:;
(2)
當(dāng)時(shí),w有最大值,50+20=70,即當(dāng)銷售單價(jià)定為70元時(shí),每月銷售這種籃球的利潤最大,最大利潤為9000元.
考點(diǎn):二次函數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形ABCD中,AB=16cm,AD=4cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),點(diǎn)P在邊AB上沿AB方向以2cm/s的速度勻速運(yùn)動(dòng),點(diǎn)Q在邊BC上沿BC方向以1cm/s的速度勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△PBQ的面積為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)y=x2–kx+k–1(k>2).

(1)求證:拋物線y=x2–kx+k-1(k>2)與x軸必有兩個(gè)交點(diǎn);
(2)拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,若,求拋物線的表達(dá)式;
(3)以(2)中的拋物線上一點(diǎn)P(m,n)為圓心,1為半徑作圓,直接寫出:當(dāng)m取何值時(shí),x軸與相離、相切、相交.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某商品的進(jìn)價(jià)為每千克40元,銷售單價(jià)與月銷售量的關(guān)系如下表(每千克售價(jià)不能高于65元):

銷售單價(jià)(元)
50
53
56
59
62
65
月銷售量(千克)
420
360
300
240
180
120
該商品以每千克50元為售價(jià),在此基礎(chǔ)上設(shè)每千克的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)每千克商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤?最大的月利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

小明投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):,在銷售過程中銷售單價(jià)不低于成本價(jià),而每件的利潤不高于成本價(jià)的60%.
(1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?
(成本=進(jìn)價(jià)×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某工廠生產(chǎn)某品牌的護(hù)眼燈,并將護(hù)眼燈按質(zhì)量分成15個(gè)等級(jí)(等級(jí)越高,質(zhì)量越好.如:二級(jí)產(chǎn)品好于一級(jí)產(chǎn)品).若出售這批護(hù)眼燈,一級(jí)產(chǎn)品每臺(tái)可獲利21元,每提高一個(gè)等級(jí)每臺(tái)可多獲利潤1元,工廠每天只能生產(chǎn)同一個(gè)等級(jí)的護(hù)眼燈,每個(gè)等級(jí)每天生產(chǎn)的臺(tái)數(shù)如下表表示:

等級(jí)(x級(jí))
一級(jí)
二級(jí)
三級(jí)

生產(chǎn)量(y臺(tái)/天)
78
76
74

(1)已知護(hù)眼燈每天的生產(chǎn)量y(臺(tái))是等級(jí)x(級(jí))的一次函數(shù),請(qǐng)直接寫出與之間的函數(shù)關(guān)系式:_____;
(2)每臺(tái)護(hù)眼燈可獲利z(元)關(guān)于等級(jí)x(級(jí))的函數(shù)關(guān)系式:______;
(3)若工廠將當(dāng)日所生產(chǎn)的護(hù)眼燈全部售出,工廠應(yīng)生產(chǎn)哪一等級(jí)的護(hù)眼燈,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某商場(chǎng)銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元.為了擴(kuò)大銷售,增加盈利,盡快減少庫存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出2件.
(1)若商場(chǎng)平均每天要盈利1200元,每件襯衫應(yīng)降價(jià)多少元?
(2)每件襯衫降價(jià)多少元,商場(chǎng)平均每天盈利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,
∠DCB=30°.點(diǎn)E、F同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng).已知F點(diǎn)移動(dòng)速度是E點(diǎn)移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點(diǎn)移動(dòng)距離為x(x>0).

⑴△EFG的邊長(zhǎng)是___________ (用含有x的代數(shù)式表示),當(dāng)x=2時(shí),點(diǎn)G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當(dāng)0<x≤2時(shí),y與x之間的函數(shù)關(guān)系式;
②當(dāng)2<x≤6時(shí),y與x之間的函數(shù)關(guān)系式;
⑶探求⑵中得到的函數(shù)y在x取含何值時(shí),存在最大值,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的圖像經(jīng)過點(diǎn)(0,-4),且當(dāng)x=2,有最大值—2。求該二次函數(shù)的關(guān)系式:

查看答案和解析>>

同步練習(xí)冊(cè)答案