某商場購進(jìn)一種單價為40元的籃球,如果以單價50元售出,那么每月可售出500個,根據(jù)銷售經(jīng)驗,銷售單價每提高1元,銷售量相應(yīng)減少10個.
(1)設(shè)銷售單價提高x元(x為正整數(shù)),寫出每月銷售量y(個)與x(元)之間的函數(shù)關(guān)系式;
(2)假設(shè)這種籃球每月的銷售利潤為w元,試寫出w與x之間的函數(shù)關(guān)系式,并通過配方討論,當(dāng)銷售單價定為多少元時,每月銷售這種籃球的利潤最大,最大利潤為多少元?

(1);(2),定價70元時,最大利潤為9000元.

解析試題分析:(1)用原來的銷售量去掉隨著銷售單價提高而減少的銷售量就可得出函數(shù)關(guān)系式;
(2)根據(jù)銷售利潤是銷售量與銷售一個獲得利潤的乘積,建立二次函數(shù),進(jìn)一步用配方法解決求最大值問題.
試題解析:(1)由題意得:;
(2);
當(dāng)時,w有最大值,50+20=70,即當(dāng)銷售單價定為70元時,每月銷售這種籃球的利潤最大,最大利潤為9000元.
考點(diǎn):二次函數(shù)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形ABCD中,AB=16cm,AD=4cm,點(diǎn)P、Q分別從A、B同時出發(fā),點(diǎn)P在邊AB上沿AB方向以2cm/s的速度勻速運(yùn)動,點(diǎn)Q在邊BC上沿BC方向以1cm/s的速度勻速運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動時間為x秒,△PBQ的面積為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)y=x2–kx+k–1(k>2).

(1)求證:拋物線y=x2–kx+k-1(k>2)與x軸必有兩個交點(diǎn);
(2)拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,若,求拋物線的表達(dá)式;
(3)以(2)中的拋物線上一點(diǎn)P(m,n)為圓心,1為半徑作圓,直接寫出:當(dāng)m取何值時,x軸與相離、相切、相交.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某商品的進(jìn)價為每千克40元,銷售單價與月銷售量的關(guān)系如下表(每千克售價不能高于65元):

銷售單價(元)
50
53
56
59
62
65
月銷售量(千克)
420
360
300
240
180
120
該商品以每千克50元為售價,在此基礎(chǔ)上設(shè)每千克的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)每千克商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

小明投資銷售一種進(jìn)價為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?
(成本=進(jìn)價×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某工廠生產(chǎn)某品牌的護(hù)眼燈,并將護(hù)眼燈按質(zhì)量分成15個等級(等級越高,質(zhì)量越好.如:二級產(chǎn)品好于一級產(chǎn)品).若出售這批護(hù)眼燈,一級產(chǎn)品每臺可獲利21元,每提高一個等級每臺可多獲利潤1元,工廠每天只能生產(chǎn)同一個等級的護(hù)眼燈,每個等級每天生產(chǎn)的臺數(shù)如下表表示:

等級(x級)
一級
二級
三級

生產(chǎn)量(y臺/天)
78
76
74

(1)已知護(hù)眼燈每天的生產(chǎn)量y(臺)是等級x(級)的一次函數(shù),請直接寫出與之間的函數(shù)關(guān)系式:_____;
(2)每臺護(hù)眼燈可獲利z(元)關(guān)于等級x(級)的函數(shù)關(guān)系式:______;
(3)若工廠將當(dāng)日所生產(chǎn)的護(hù)眼燈全部售出,工廠應(yīng)生產(chǎn)哪一等級的護(hù)眼燈,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元.為了擴(kuò)大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出2件.
(1)若商場平均每天要盈利1200元,每件襯衫應(yīng)降價多少元?
(2)每件襯衫降價多少元,商場平均每天盈利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,
∠DCB=30°.點(diǎn)E、F同時從B點(diǎn)出發(fā),沿射線BC向右勻速移動.已知F點(diǎn)移動速度是E點(diǎn)移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點(diǎn)移動距離為x(x>0).

⑴△EFG的邊長是___________ (用含有x的代數(shù)式表示),當(dāng)x=2時,點(diǎn)G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當(dāng)0<x≤2時,y與x之間的函數(shù)關(guān)系式;
②當(dāng)2<x≤6時,y與x之間的函數(shù)關(guān)系式;
⑶探求⑵中得到的函數(shù)y在x取含何值時,存在最大值,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的圖像經(jīng)過點(diǎn)(0,-4),且當(dāng)x=2,有最大值—2。求該二次函數(shù)的關(guān)系式:

查看答案和解析>>

同步練習(xí)冊答案