【題目】如圖,印刷一張矩形的包裝紙,印刷部分的長(zhǎng)為8cm,寬為4cm,上下空白寬各cm,左右空白寬各xcm,四周空白處的面積為Scm2

1)求Sx的關(guān)系式;

2)當(dāng)四周空白處的面積為18cm2時(shí),求x的值.

【答案】1S2x2+16x;(2)所以當(dāng)四周空白處的面積為18cm2時(shí),x的值為1

【解析】

1)矩形的總面積=印刷面積32+空白部分面積S,據(jù)此列出函數(shù)關(guān)系式即可.

2)令S等于18即可求得到關(guān)于x的一元二次方程,進(jìn)而就能求出這張廣告的紙張的長(zhǎng)和寬.

解:(1)因?yàn)橛∷⒉糠值拿娣e是4×832cm2,上下空白寬各m,左右空白寬各xcm

S+32(8+2x)(x+4);

∴S2x2+16x

2)根據(jù)題意有2x2+16x18

整理得x2+8x90,

解得x1x=﹣9(舍去),

所以當(dāng)四周空白處的面積為18cm2時(shí),x的值為1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M 達(dá)點(diǎn)B時(shí),點(diǎn)MN同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某體育用品商店一共購(gòu)進(jìn)20個(gè)籃球和排球,進(jìn)價(jià)和售價(jià)如下表所示,全部銷售完后共獲得利潤(rùn)260元;

籃球

排球

進(jìn)價(jià)(元/個(gè))

80

50

售價(jià)(元/個(gè))

95

60

1)列方程組求解:商店購(gòu)進(jìn)籃球和排球各多少個(gè)?

2)銷售6個(gè)排球的利潤(rùn)與銷售幾個(gè)籃球的利潤(rùn)相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB6cm,AD8cm,折疊該紙片,使得AB邊落在對(duì)角線AC上,點(diǎn)B落在點(diǎn)F處,折痕為AE,則EF_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直徑坐標(biāo)系中,反比例函數(shù)y=(x>0)的圖象上有一點(diǎn)A(m,4),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,將點(diǎn)B向右平移2個(gè)單位長(zhǎng)度得到點(diǎn)C,過(guò)點(diǎn)C作y軸的平行線交反比例函數(shù)的圖象于點(diǎn)D,CD=

(1)求點(diǎn)D的橫坐標(biāo)(用含m的式子表示);

(2)求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,矩形在坐標(biāo)系中,、分別在軸、軸的正半軸上,,矩形周長(zhǎng)為18,面積為18

1)求點(diǎn)坐標(biāo);

2)如圖2,、分別在、上,連,若,,設(shè)點(diǎn)橫坐標(biāo)為,求的長(zhǎng)(用含的代數(shù)式表示);

3)如圖3,在(2)的條件下,中點(diǎn),連并延長(zhǎng),連,若,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB≠BC,連接AC,AE是∠BAD的平分線,交邊DC的延長(zhǎng)線于點(diǎn)F

(1)證明:CE=CF;

(2)如圖(2),連接BF,若∠ABC=60°,BC=2AB,試判斷四邊形ABFC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù) y=ax2+bx+c 部分圖象如圖所示,則下列結(jié)論中正確的是(

A. a>0 B. 當(dāng) x>2 時(shí),y x 的增大而增大

C. 不等式 ax2+bx+c>0 的解集是﹣1<x<5 D. a﹣b+c>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)展學(xué)生安全知識(shí)競(jìng)賽.現(xiàn)抽取部分學(xué)生的競(jìng)賽成績(jī)(滿分為100分,得分均為整數(shù))進(jìn)行統(tǒng)計(jì),繪制了圖中兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息,回答下列問(wèn)題:

(1)a=  ,n=  ;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)該校共有2000名學(xué)生.若成績(jī)?cè)?/span>80分以上的為優(yōu)秀,請(qǐng)你估計(jì)該校成績(jī)優(yōu)秀的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案