【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)C的坐標(biāo)為(0,4),動(dòng)點(diǎn)A以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)O出發(fā)沿x軸的正方向運(yùn)動(dòng),M是線段AC的中點(diǎn).將線段AM以點(diǎn)A為中心,沿順時(shí)針?lè)较蛐D(zhuǎn)90°,得到線段AB.過(guò)點(diǎn)B作x軸的垂線,垂足為E,過(guò)點(diǎn)C作y軸的垂線,交直線BE于點(diǎn)D.運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)點(diǎn)B與點(diǎn)D重合時(shí),求t的值;
(2)設(shè)△BCD的面積為S,當(dāng)t為何值時(shí),S=?
(3)連接MB,當(dāng)MB∥OA時(shí),如果拋物線y=ax2﹣10ax的頂點(diǎn)在△ABM內(nèi)部(不包括邊),求a的取值范圍.
【答案】(1)t=8(2)當(dāng)t=3或3+5時(shí),S=(3)-<a<-
【解析】解:(1)∵,,
∴.
∴Rt△CAO∽R(shí)t△ABE.·························· 2分
∴.
∴.∴.························· 3分
(2)由Rt△CAO∽R(shí)t△ABE可知:,.··········· 4分
當(dāng)0<<8時(shí),.
∴.····························· 6分
當(dāng)>8時(shí),.
∴,(為負(fù)數(shù),舍去).
當(dāng)或時(shí),.······················ 8分
(3)過(guò)M作MN⊥軸于N,則.
當(dāng)MB∥OA時(shí),,.··············· 9分
拋物線的頂點(diǎn)坐標(biāo)為(5,).············· 10分
它的頂點(diǎn)在直線上移動(dòng).
直線交MB于點(diǎn)(5,2),交AB于點(diǎn)(5,1).············· 11分
∴1<<2.
∴<<. 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線相交于點(diǎn)O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若點(diǎn)E到CD的距離為2,CD=3,試求出矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:一輛汽車在一個(gè)十字路口遇到紅燈剎車停下,汽車?yán)锏鸟{駛員看地面的斑馬線前后兩端的視角分別是∠DCA=30°和∠DCB=60°,如果斑馬線的寬度是AB=3米,駕駛員與車頭的距離是0.8米,這時(shí)汽車車頭與斑馬線的距離x是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)和一次函數(shù)y=-x+a-1(a為常數(shù))
(1)當(dāng)a=5時(shí),求反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo)(5分)
(2)是否存在實(shí)數(shù)a,使反比例函數(shù)與一次函數(shù)有且只有一個(gè)交點(diǎn),如果存在,求出實(shí)數(shù)a,如果不存在,說(shuō)明理由(5分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位長(zhǎng)度的速度沿負(fù)方向運(yùn)動(dòng),動(dòng)點(diǎn)從原點(diǎn)出發(fā)以每秒個(gè)單位長(zhǎng)度的速度沿負(fù)方向運(yùn)動(dòng),動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位的速度先沿正方向運(yùn)動(dòng),到達(dá)原點(diǎn)后立即按原速反方向運(yùn)動(dòng),三點(diǎn)同時(shí)出發(fā),出發(fā)時(shí)間為(秒).
(1)點(diǎn)在數(shù)軸上所表示的數(shù)分別為:____________,____________;
(2)當(dāng)兩點(diǎn)重合時(shí),求此時(shí)點(diǎn)在數(shù)軸上所表示的數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:,
請(qǐng)按規(guī)律,進(jìn)行以下的探索:
①
②
③
求 . (用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在Rt△ABC中,∠ACB=90°,AE平分∠BAC交BC于點(diǎn)E,D為AC上的點(diǎn),BE=DE.
(1)求證:∠B+∠EDA=180°;
(2)求 的值。.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長(zhǎng)依此為2,4,6,8,...,頂點(diǎn)依此用A1,A2,A3,A4......表示,則頂點(diǎn)A55的坐標(biāo)是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線AB經(jīng)過(guò)點(diǎn)A(﹣2,0),與y軸的正半軸交于點(diǎn)B,且OA=2OB.
(1)求直線AB的函數(shù)表達(dá)式;
(2)點(diǎn)C在直線AB上,且BC=AB,點(diǎn)E是y軸上的動(dòng)點(diǎn),直線EC交x軸于點(diǎn)D,設(shè)點(diǎn)E的坐標(biāo)為(0,m)(m>2),求點(diǎn)D的坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)的條件下,若CE:CD=1:2,點(diǎn)F是直線AB上的動(dòng)點(diǎn),在直線AC上方的平面內(nèi)是否存在一點(diǎn)G,使以C,G,F,E為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com