如圖,已知矩形ABCD的邊長(zhǎng)AB=3cm,BC=6cm.某一時(shí)刻,動(dòng)點(diǎn)M從A點(diǎn)出發(fā)沿AB方向以1cm/s的速度向B點(diǎn)勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)N從D點(diǎn)出發(fā)沿DA方向以2cm/s的速度向A點(diǎn)勻速運(yùn)動(dòng),問:
(1)經(jīng)過多少時(shí)間,△AMN的面積等于矩形ABCD面積的
(2)是否存在時(shí)刻t,使以A,M,N為頂點(diǎn)的三角形與△ACD相似?若存在,求t的值;若不存在,請(qǐng)說明理由.

【答案】分析:(1)關(guān)于動(dòng)點(diǎn)問題,可設(shè)時(shí)間為x,根據(jù)速度表示出所涉及到的線段的長(zhǎng)度,找到相等關(guān)系,列方程求解即可,如本題中利用,△AMN的面積等于矩形ABCD面積的作為相等關(guān)系;
(2)先假設(shè)相似,利用相似中的比例線段列出方程,有解的且符合題意的t值即可說明存在,反之則不存在.
解答:解:(1)設(shè)經(jīng)過x秒后,△AMN的面積等于矩形ABCD面積的,
則有:(6-2x)x=×3×6,即x2-3x+2=0,(2分)
解方程,得x1=1,x2=2,(3分)
經(jīng)檢驗(yàn),可知x1=1,x2=2符合題意,
所以經(jīng)過1秒或2秒后,△AMN的面積等于矩形ABCD面積的.(4分)

(2)假設(shè)經(jīng)過t秒時(shí),以A,M,N為頂點(diǎn)的三角形與△ACD相似,
由矩形ABCD,可得∠CDA=∠MAN=90°,
因此有(5分)
①,或②(6分)
解①,得t=;解②,得t=(7分)
經(jīng)檢驗(yàn),t=或t=都符合題意,
所以動(dòng)點(diǎn)M,N同時(shí)出發(fā)后,經(jīng)過秒或秒時(shí),以A,M,N為頂點(diǎn)的三角形與△ACD相似.(8分)
點(diǎn)評(píng):主要考查了相似三角形的判定,正方形的性質(zhì)和一元二次方程的運(yùn)用以及解分式方程.要掌握正方形和相似三角形的性質(zhì),才會(huì)靈活的運(yùn)用.注意:一般關(guān)于動(dòng)點(diǎn)問題,可設(shè)時(shí)間為x,根據(jù)速度表示出所涉及到的線段的長(zhǎng)度,找到相等關(guān)系,列方程求解即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形DEFG內(nèi)接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,則矩形的邊長(zhǎng)DG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中,AB=12cm,BC=6cm,點(diǎn)M沿AB方向從A向B以2cm/秒的速度移動(dòng),點(diǎn)N從D沿DA方向以1c精英家教網(wǎng)m/秒的速度移動(dòng),如果M、N兩點(diǎn)同時(shí)出發(fā),移動(dòng)的時(shí)間為x秒(0≤x≤6).
(1)當(dāng)x為何值時(shí),△MAN為等腰直角三角形?
(2)當(dāng)x為何值時(shí),有△MAN∽△ABC?
(3)愛動(dòng)腦筋的小紅同學(xué)在完成了以上聯(lián)系后,對(duì)該問題作了深入的研究,她認(rèn)為:在M、N的移動(dòng)過程中(N不與D、A重合,M不與A、B重合),以A、M、C、N為頂點(diǎn)的四邊形面積是一個(gè)常數(shù).她的這種想法對(duì)嗎?請(qǐng)說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正三角形ABC的邊長(zhǎng)AB是480毫米.一質(zhì)點(diǎn)D從點(diǎn)B出發(fā),沿BA方向,以每秒鐘10毫米的速度向精英家教網(wǎng)點(diǎn)A運(yùn)動(dòng).
(1)建立合適的直角坐標(biāo)系,用運(yùn)動(dòng)時(shí)間t(秒)表示點(diǎn)D的坐標(biāo);
(2)過點(diǎn)D在三角形ABC的內(nèi)部作一個(gè)矩形DEFG,其中EF在BC邊上,G在AC邊上.在圖中找出點(diǎn)D,使矩形DEFG是正方形(要求所表達(dá)的方式能體現(xiàn)出找點(diǎn)D的過程);
(3)過點(diǎn)D、B、C作平行四邊形,當(dāng)t為何值時(shí),由點(diǎn)C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時(shí)點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧德質(zhì)檢)如圖,已知Rt△ABC,∠B=90°,AB=8,BC=6,把斜邊AC平均分成n段,以每段為對(duì)角線作邊與AB、BC平行的小矩形,則這些小矩形的面積和是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中AB:BC=3:1,點(diǎn)A、B在x軸上,直線y=mx+n(0<m<n<
1
2
),過點(diǎn)A、C交y軸于點(diǎn)E,S△AOE=
9
8
S矩形ABCD,拋物線y=ax2+bx+c過點(diǎn)A、B,且頂點(diǎn)G在直線y=mx+n上,拋物線與y軸交于點(diǎn)F.
(1)點(diǎn)A的坐標(biāo)為
(-3n,0)
(-3n,0)
;B的坐標(biāo)
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

同步練習(xí)冊(cè)答案