有理數(shù)m,n為相反數(shù),x,y互為負倒數(shù),z的絕對值等于7,求3m+3n+5xy+z的值.
解:∵m,n為相反數(shù),x,y互為負倒數(shù),z的絕對值等于7,
∴m+n=0,xy=-1,z=±7,
∴3m+3n+5xy+z=3(m+n)+5xy+z
=3×0+5×(-1)+z
=-5+z,
當z=7時,3m+3n+5xy+z=-5+7=2;
當z=-7時,3m+3n+5xy+z=-5-7=-12.
∴3m+3n+5xy+z的值為2或-12.
分析:根據(jù)相反數(shù)、倒數(shù)和絕對值的意義得到m+n=0,xy=-1,z=±7,再變形3m+3n+5xy+z=3(m+n)+5xy+z,然后把m+n=0,xy=-1代入得到3m+3n+5xy+z=-5+z,再分別把z=7或-7代入計算即可.
點評:本題考查了代數(shù)式求值:先把所求的代數(shù)式根據(jù)已知條件進行變形,然后利用整體的思想進行計算.也考查了相反數(shù)、倒數(shù)和絕對值.