如圖(1),在等邊△ABC的頂點(diǎn)B、C處各有一只蝸牛,它們同時(shí)出發(fā)分別以每分鐘1各單位的速度油B向C和由C向A爬行,其中一只蝸牛爬到終點(diǎn)s時(shí),另一只也停止運(yùn)動(dòng),經(jīng)過t分鐘后,它們分別爬行到D,P處,請(qǐng)問:
(1)在爬行過程中,BD和AP始終相等嗎?為什么?
(2)問蝸牛在爬行過程中BD與AP所成的∠DQA大小有無變化?請(qǐng)證明你的結(jié)論.
(3)若蝸牛沿著BC和CA的延長線爬行,BD與AP交于點(diǎn)Q,其他條件不變,如圖(2)所示,蝸牛爬行過程中的∠DQA大小變化了嗎?若無變化,請(qǐng)證明.若有變化,請(qǐng)直接寫出∠DQA的度數(shù).
解:(1)在爬行過程中,BD和AP始終相等,
理由是:∵△ABC是等邊三角形,
∴∠CAB=∠C=∠ABP=60°,AB=BC,
在△BDC和△APB中,
,
∴△BDC≌△APB(SAS),
∴BD=AP.
(2)蝸牛在爬行過程中BD與AP所成的∠DQA大小無變化,
理由:∵△BDC≌△APB,
∴∠CBD=∠BAP,
∴∠DQA=∠DBA+∠BAP=∠DBA+∠CBD=∠ABC=60°,
即蝸牛在爬行過程中BD與AP所成的∠DQA大小無變化,始終是60°.
(3)蝸牛爬行過程中的∠DQA大小無變化,
理由是:根據(jù)題意得:BP=CD,
∵BC=AC,
∴CP=AD,
∵△ABC是等邊三角形,
∴AC=AB,∠CAB=∠ACB=60°,
∵∠ACP+∠ACB=180°,∠DAB+∠CAB=180°,
∴∠ACP=∠BAD,
在△ABD和△ACP中,
,
∴△ABD≌△ACP(SAS),
∴∠CAP=∠ABD,
∴∠AQD=∠ABD+∠BAQ=∠CAP+∠QAB
=180°﹣∠CAB
=180°﹣60°
=120°,
即蝸牛爬行過程中的∠DQA無變化,等于120°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD是平行四邊形,∠D=120°,∠CAD=32°,則∠ABC、∠CAB的度數(shù)分別為()
A. 28°,120° B. 120°,28° C. 32°,120° D. 120°,32°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5cm≤h≤6cm 解:∵將一根長為18cm的筷子,置于底面直徑為5cm,高為12cm的圓柱形水杯中,
∴在杯子中筷子最短是等于杯子的高,最長是等于杯子斜邊長度,
∴當(dāng)杯子中筷子最短是等于杯子的高時(shí),x=12,
最長時(shí)等于杯子斜邊長度是:x==13,
∴h的取值范圍是:(18﹣13)cm≤h≤(18﹣12)cm,
即5cm≤h≤6cm.
故答案為:5cm≤h≤6cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知AB=AC,∠A=36°,AC的垂直平分線MN交AB于D,AC于M.以下結(jié)論:
①△BCD是等腰三角形;②射線CD是△ACB的角平分線;③△BCD的周長C△BCD=AB+BC;④△ADM≌△BCD.
正確的有()
A. ①② B. ①③ C. ②③ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長均為1,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),以格點(diǎn)為頂點(diǎn)按下列要求畫圖:
(1)在圖中畫一條線段MN,使MN=;
(2)在圖中畫一個(gè)三邊長均為無理數(shù),且各邊都不相等的直角△DEF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com