精英家教網 > 初中數學 > 題目詳情

如圖,拋物線經過,,三點.

(1)求該拋物線的解析式;

(2)在該拋物線的對稱軸上存在一點,使的值最小,求點的坐標以

的最小值;

(3)在軸上取一點,連接.現有一動點以每秒個單位長度的速度從點出發(fā),沿線段向點運動,運動時間為秒,另有一動點以某一速度同時從點出發(fā),沿線段向點運動,當點、點兩點中有一點到達終點時,另一點則停止運動(如右圖所示).在運動的過程中是否存在一個值,使線段恰好被垂直平分.如果存在,請求出的值和點的速度,如果不存在,請說明理由.

【解析】此題主要考查了用待定系數法求二次函數解析式,以及利用函數圖象和圖象上點的性質判斷符合某一條件的點是否存在,是一道開放性題目,有利于培養(yǎng)同學們的發(fā)散思維能力

 

【答案】

(1)4分拋物線的解析式是;

(2)4分點,關于拋物線的對稱軸對稱,直線與對稱軸的交點為,點的坐標為),以及的最小值為的長度

的坐標為),得2分;

的最小值為的長度得2分

(3)4分,存在,連接,DQ∥BC,

△ADQ∽△ABC,以下易得的速度是個單位長度/秒.

 

解得得2分,點的速度是個單位長度/秒,得2分

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,拋物線經過A(4,0),B(1,0),C(0,-2)三點.
(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;
(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖:拋物線經過A(-3,0)、B(0,4)、C(4,0)三點,
(1)求拋物線的解析式;
(2)求該拋物線的頂點坐標以及最值;
(3)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經過t秒的移動,線段PQ被BD垂直平分,求t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•蘇州一模)如圖,拋物線經過A,C,D三點,且三點坐標為A(-1,0),C(0,5),D(2,5),拋物線與x軸的另一個交點為B點,點F為y軸上一動點,作平行四邊形DFBG,
(1)B點的坐標為
(3,0)
(3,0)

(2)是否存在F點,使四邊形DFBG為矩形?如存在,求出F點坐標;如不存在,說明理由;
(3)連結FG,FG的長度是否存在最小值?如存在求出最小值;若不存在說明理由;
(4)若E為AB中點,找出拋物線上滿足到E點的距離小于2的所有點的橫坐標x的范圍:
-1<x<
5-
91
5
5+
91
5
<x<3
-1<x<
5-
91
5
5+
91
5
<x<3

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•高要市二模)已知:如圖,拋物線經過點O、A、B三點,四邊形OABC是直角梯形,其中點A在x軸上,點C在y軸上,BC∥OA,A(12,0)、B(4,8).
(1)求拋物線所對應的函數關系式;
(2)D為OA的中點,動點P自A點出發(fā)沿A→B→C→O的路線移動,若線段PD將梯形OABC的面積分成1﹕3兩部分,求此時P點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,拋物線經過A(-2,0)、B(8,0)兩點,與y軸正半軸交與點C,且AB=BC,點P為第一象限內拋物線上一動點(不與B、C重合),設點P的坐標為(m,n).
(1)求拋物線的解析式;
(2)點D在BC上,且PD∥y軸,探索
BD•DCPD
的值;
(3)設拋物線的對稱軸為l,若以點P為圓心的⊙P與直線BC相切,請寫出⊙P的半徑R關于m函數關系式,并判斷⊙P與直線l的位置關系.

查看答案和解析>>

同步練習冊答案