【題目】如圖,拋物線yax2bxc經(jīng)過ABC的三個(gè)頂點(diǎn),與y軸相交于(0 ),點(diǎn)A坐標(biāo)為(1,2),點(diǎn)B是點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn),點(diǎn)Cx軸的正半軸上.

1求該拋物線的函數(shù)解析式;

2點(diǎn)F為線段AC上一動(dòng)點(diǎn),過點(diǎn)FFEx軸,FGy軸,垂足分別為點(diǎn)E,G,當(dāng)四邊形OEFG為正方形時(shí),求出點(diǎn)F的坐標(biāo);

32中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)平移的距離為t,正方形的邊EFAC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使DMN是等腰三角形?若存在,求t的值;若不存在,請(qǐng)說明理由.

【答案】(1y=﹣x2+;(2)(1,1);(3)當(dāng)△DMN是等腰三角形時(shí),t的值為,3﹣1

【解析】試題分析:(1)易得拋物線的頂點(diǎn)為(0,),然后只需運(yùn)用待定系數(shù)法,就可求出拋物線的函數(shù)關(guān)系表達(dá)式;

2當(dāng)點(diǎn)F在第一象限時(shí),如圖1,可求出點(diǎn)C的坐標(biāo),直線AC的解析式,設(shè)正方形OEFG的邊長為p,則Fp,p),代入直線AC的解析式,就可求出點(diǎn)F的坐標(biāo);當(dāng)點(diǎn)F在第二象限時(shí),同理可求出點(diǎn)F的坐標(biāo),此時(shí)點(diǎn)F不在線段AC上,故舍去;

3)過點(diǎn)MMH⊥DNH,如圖2,由題可得0≤t≤2.然后只需用t的式子表示DN、DM2MN2,分三種情況(①DN=DM②ND=NM③MN=MD)討論就可解決問題.

試題解析:(1點(diǎn)B是點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn),

拋物線的對(duì)稱軸為y軸,

拋物線的頂點(diǎn)為(0,),

故拋物線的解析式可設(shè)為y=ax2+

∵A﹣1,2)在拋物線y=ax2+上,

∴a+=2,

解得a=﹣,

拋物線的函數(shù)關(guān)系表達(dá)式為y=﹣x2+;

2當(dāng)點(diǎn)F在第一象限時(shí),如圖1,

y=0得,x2+=0,

解得:x1=3x2=﹣3,

點(diǎn)C的坐標(biāo)為(3,0).

設(shè)直線AC的解析式為y=mx+n,

則有,

解得,

直線AC的解析式為y=﹣x+

設(shè)正方形OEFG的邊長為p,則Fp,p).

點(diǎn)Fpp)在直線y=﹣x+上,

∴﹣p+=p,

解得p=1,

點(diǎn)F的坐標(biāo)為(1,1).

當(dāng)點(diǎn)F在第二象限時(shí),

同理可得:點(diǎn)F的坐標(biāo)為(﹣3,3),

此時(shí)點(diǎn)F不在線段AC上,故舍去.

綜上所述:點(diǎn)F的坐標(biāo)為(1,1);

3)過點(diǎn)MMH⊥DNH,如圖2,

OD=tOE=t+1

點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng),∴0≤t≤2

當(dāng)x=t時(shí),y=﹣t+,則Nt,t+),DN=﹣t+

當(dāng)x=t+1時(shí),y=﹣t+1+=﹣t+1,則Mt+1,t+1),ME=﹣t+1

Rt△DEM中,DM2=12+t+12=t2﹣t+2

Rt△NHM中,MH=1NH=t+t+1=,

∴MN2=12+2=

當(dāng)DN=DM時(shí),

t+2=t2﹣t+2,

解得t=;

當(dāng)ND=NM時(shí),

t+=,

解得t=3﹣

當(dāng)MN=MD時(shí),

=t2﹣t+2,

解得t1=1t2=3

∵0≤t≤2,∴t=1

綜上所述:當(dāng)△DMN是等腰三角形時(shí),t的值為,3﹣1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)林業(yè)局要考察一種樹苗移植的成活率,對(duì)該地區(qū)這種樹苗移植成活情況進(jìn)行調(diào)查統(tǒng)計(jì),并繪制了如圖所示的統(tǒng)計(jì)表,根據(jù)統(tǒng)計(jì)圖提供的信息解決下列問題:

這種樹苗成活的頻率穩(wěn)定在_________,成活的概率估計(jì)值為_______________

該地區(qū)已經(jīng)移植這種樹苗5萬棵.

估計(jì)這種樹苗成活___________萬棵;

如果該地區(qū)計(jì)劃成活18萬棵這種樹苗,那么還需移植這種樹苗約多少萬棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線L: 與x軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)
C(0,4),動(dòng)點(diǎn)M從A點(diǎn)以每秒1個(gè)單位的速度沿x軸向左移動(dòng)。

(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求△COM的面積S與M的移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時(shí)△COM≌△AOB,并求此時(shí)M點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形AOBC在直角坐標(biāo)系中,點(diǎn)A在y軸上,點(diǎn)B在x軸上,已知點(diǎn)C的坐標(biāo)是(8,4).

(1)求對(duì)角線AB所在直線的函數(shù)關(guān)系式;
(2)對(duì)角線AB的垂直平分線MN交x軸于點(diǎn)M,連接AM,求線段AM的長;
(3)若點(diǎn)P是直線AB上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAM的面積與長方形OABC的面積相等時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年,某市發(fā)生了嚴(yán)重干旱,該市政府號(hào)召居民節(jié)約用水,為了解居民用水情況,在某小區(qū)隨機(jī)抽查了10戶家庭的月用水量,結(jié)果統(tǒng)計(jì)如圖,則關(guān)于這10戶家庭的月用水量,下列說法錯(cuò)誤的是( )

A.眾數(shù)是6
B.中位數(shù)是6
C.平均數(shù)是6
D.方差是4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】y=x2+2的對(duì)稱軸是直線(
A.x=2
B.x=0
C.y=0
D.y=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20183月瑞士日內(nèi)瓦車展亮相了眾多新能源車型,其中五款電動(dòng)汽車的續(xù)航里程數(shù)據(jù)如下,則這五款電動(dòng)汽車?yán)m(xù)航里程的眾數(shù)和中位數(shù)分別為(  )

車型品牌

大眾

保時(shí)捷

現(xiàn)代小型SUV

捷豹

韓國雙龍

續(xù)航里程(公里)

665

500

470

500

450

A.665,470B.450500C.500,470D.500,500

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,AB=4,BC=5,∠ABC=60°,對(duì)角線AC,BD交于點(diǎn)O,過點(diǎn)O作OE⊥AD,則OE等于(
A.
B.2
C.2
D.2.5

查看答案和解析>>

同步練習(xí)冊(cè)答案