1、對于拋物線y=-3x2,下列說法正確的是( 。
分析:根據(jù)二次函數(shù)的性質(zhì)進行判斷.
解答:解:
∵a=-3<0,
∴圖象開口向下,
又∵b=0,
∴對稱軸是x=0,即是y軸.
故選D.
點評:考查拋物線開口方向與對稱軸.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(A)拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,且當(dāng)x=0和x=2時,y的值相等.直線y=3x-7與這條拋物線相交于兩點,其中一點的橫坐標是4,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段BM上一點,過點P向x軸引垂線,垂足為Q.若點P在線段BM上運動(點P不與點B、M重合),設(shè)OQ的長為t,四邊形PQOC的面積為S.求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍.
(3)對于二次三項式x2-10x+36,小明同學(xué)作出如下結(jié)論:無論x取什么實數(shù),它的值都不可能等于11.你是否同意他的說法?說明你的理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鎮(zhèn)江)對于二次函數(shù)y=x2-3x+2和一次函數(shù)y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)稱為這兩個函數(shù)的“再生二次函數(shù)”,其中t是不為零的實數(shù),其圖象記作拋物線E.
現(xiàn)有點A(2,0)和拋物線E上的點B(-1,n),請完成下列任務(wù):
【嘗試】
(1)當(dāng)t=2時,拋物線E的頂點坐標是
(1,-2)
(1,-2)
;
(2)判斷點A是否在拋物線E上;
(3)求n的值.
【發(fā)現(xiàn)】
通過(2)和(3)的演算可知,對于t取任何不為零的實數(shù),拋物線E總過定點,這個定點的坐標是
A(2,0)、B(-1,6)
A(2,0)、B(-1,6)

【應(yīng)用1】
二次函數(shù)y=-3x2+5x+2是二次函數(shù)y=x2-3x+2和一次函數(shù)y=-2x+4的一個“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由.
【應(yīng)用2】
以AB為一邊作矩形ABCD,使得其中一個頂點落在y軸上,若拋物線E經(jīng)過點A、B、C、D中的三點,求出所有符合條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對于二次函數(shù)y=x2-3x+2和一次函數(shù)y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)稱為這兩個函數(shù)的“再生二次函數(shù)”,其中t是不為零的實數(shù),其圖象記作拋物線E.現(xiàn)有點A(2,0)和拋物線E上的點B(-1,n),請完成:
(1)當(dāng)t=2時,求拋物線y=t(x2-3x+2)+(1-t)(-2x+4)的頂點坐標.
(2)判斷點A是否在拋物線E上,并求出n的值.
(3)通過(2)演算可知,對于t取任何不為零的實數(shù),拋物線E總過定點,寫出定點坐標.
(4)二次函數(shù)y=-3x2+5x+2是二次函數(shù)y=x2-3x+2和一次函數(shù)y=-2x+4的一個“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題
對于二次函數(shù)y=-x2+8x-6和一次函數(shù)y=3x-4,把y=t(-x2+8x-6)+(2-3t)(3x-4)稱為這兩個函數(shù)的“再生二次函數(shù)”,其中t是不為零的實數(shù),其圖象記作拋物線C.現(xiàn)有點A(2,4)和拋物線C上的點B(-3,n),請完成下列任務(wù):
【嘗試】
(1)判斷點A是否在拋物線C上;
(2)求n的值
【發(fā)現(xiàn)】
     通過(1)和(2)的演算可知,對于t取任何不為零的實數(shù),拋物線C總過固定的兩點,則這兩點的坐標分別是
(2,4),(-3,-26)
(2,4),(-3,-26)

【應(yīng)用】
     二次函數(shù)y=4x2-6x+9是二次函數(shù)y=-x2+8x-6和一次函數(shù)y=3x-4的一個“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

對于二次函數(shù)y=x2-3x+2和一次函數(shù)y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)稱為這兩個函數(shù)的“再生二次函數(shù)”,其中t是不為零的實數(shù),其圖象記作拋物線E.現(xiàn)有點A(2,0)和拋物線E上的點B(-1,n),請完成:
(1)當(dāng)t=2時,求拋物線y=t(x2-3x+2)+(1-t)(-2x+4)的頂點坐標.
(2)判斷點A是否在拋物線E上,并求出n的值.
(3)通過(2)演算可知,對于t取任何不為零的實數(shù),拋物線E總過定點,寫出定點坐標.
(4)二次函數(shù)y=-3x2+5x+2是二次函數(shù)y=x2-3x+2和一次函數(shù)y=-2x+4的一個“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案