【題目】某校為了更好地開展“陽光體育一小時”活動,對本校學生進行了“寫出你最喜歡的體育活動項目(只寫一項)”的隨機抽樣調(diào)查,下面是根據(jù)得到的相關(guān)數(shù)據(jù)繪制的統(tǒng)計圖的一部分.
抽樣調(diào)查學生最喜歡的運動項目的人數(shù)統(tǒng)計圖 各運動項目的喜歡人數(shù)占抽樣總?cè)藬?shù)百分比統(tǒng)計圖
請根據(jù)以上信息解答下列問題:
(1)該校對________名學生進行了抽樣調(diào)查;
(2)請將圖1和圖2補充完整;
(3)圖2中跳繩所在的扇形對應(yīng)的圓心角的度數(shù)是________;
(4)若該校共有2400名同學,請利用樣本數(shù)據(jù)估計全校學生中最喜歡跳繩運動的人數(shù)約為多少?
【答案】(l)200;(2)見解析;(3)144o;(4)
【解析】
(1)由最喜歡跳繩運動的人數(shù)及其所占百分比可得總?cè)藬?shù);
(2)根據(jù)各組人數(shù)之和等于總?cè)藬?shù)求得最喜歡投籃運動的人數(shù),再除以總?cè)藬?shù)可得其對應(yīng)百分比,從而補全圖1和圖2;
(3)用360°乘以最喜歡跳繩運動的人數(shù)所占百分比可得跳繩所在的扇形圓心角的度數(shù);
(4)總?cè)藬?shù)乘以樣本中最喜歡跳繩運動的人數(shù)所占百分比即可得.
解:(1)被調(diào)查的學生總?cè)藬?shù)為80÷40%=200,
故答案為:200;
(2)最喜歡投籃運動的人數(shù)為200-(40+80+20)=60,
最喜歡投籃運動的人數(shù)所占百分比為×100%=30%,
補全圖形如下:
(3)圖2中跳繩所在的扇形對應(yīng)的圓心角的度數(shù)是為360°×40%=144°.
故答案為144°;
(4)2400×40%=960(人).
答:估計全校學生中最喜歡跳繩運動的人數(shù)約為960人.
科目:初中數(shù)學 來源: 題型:
【題目】(2016四川省攀枝花市)某市為了鼓勵居民節(jié)約用水,決定實行兩級收費制度.若每月用水量不超過14噸(含14噸),則每噸按政府補貼優(yōu)惠價m元收費;若每月用水量超過14噸,則超過部分每噸按市場價n元收費.小明家3月份用水20噸,交水費49元;4月份用水18噸,交水費42元.
(1)求每噸水的政府補貼優(yōu)惠價和市場價分別是多少?
(2)設(shè)每月用水量為x噸,應(yīng)交水費為y元,請寫出y與x之間的函數(shù)關(guān)系式;
(3)小明家5月份用水26噸,則他家應(yīng)交水費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填寫推理理由:
已知:如圖,D,F(xiàn),E分別是BC,AC,AB上的點,DF∥AB,DE∥AC,試說明∠EDF=∠A.
解:∵DF∥AB ( ),
∴∠A+∠AFD=180° ( ).
∵DE∥AC ( ),
∴∠AFD+∠EDF=180° ( ).
∴∠A=∠EDF ( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:如圖,在△中,把繞點按順時針方向旋轉(zhuǎn)得到,把繞點按逆時針方向旋轉(zhuǎn)得到,連接,當時,我們稱△是△的“旋補三角形”,△邊上的中線叫做的“旋補中線”,點叫做“旋補中心”.
⑴ 特例感知:在如圖、如圖中,是的“旋補三角形”,是的“旋補中線”.
① 如圖,當為等邊三角形時,與的數(shù)量關(guān)系為= ;
② 如圖,當,時,則長為 .
⑵ 精確作圖:如圖,已知在四邊形內(nèi)部存在點,使得是的“旋補三角形”(點D的對應(yīng)點為點A,點C的對應(yīng)點為點B),請用直尺和圓規(guī)作出點(要求:保留作圖痕跡,不寫作法和證明)
⑶ 猜想論證:在如圖中,當△為任意三角形時,猜想與的數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系___;
(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點E. F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系xOy中的點,若點的坐標為(其中k為常數(shù),且),則稱點為點P的“k屬派生點”.
例如:的“4屬派生點”為,即.
(1)點的“2屬派生點”的坐標為________;
(2)若點P的“3屬派生點”的坐標為,求點P的坐標;
(3)若點P在y軸的正半軸上,點P的“k屬派生點”為點,且點到y軸的距離不小于線段OP長度的5倍,則k的取值范圍是________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,半徑OA⊥OB,過OA的中點C作FD∥OB交⊙O于D、F兩點,且CD=,以O為圓心,OC為半徑作,交OB于E點.
(1)求⊙O的半徑OA的長;
(2)計算陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖像與軸交于、兩點,與軸交于點,點是拋物線頂點,點是直線下方的拋物線上一動點.
()這個二次函數(shù)的表達式為____________.
()設(shè)直線的解析式為,則不等式的解集為___________.
()連結(jié)、,并把沿翻折,得到四邊形,那么是否存在點,使四邊形為菱形?若存在,請求出此時點的坐標;若不存在,請說明理由.
()當四邊形的面積最大時,求出此時點的坐標和四邊形的最大面積.
()若把條件“點是直線下方的拋物線上一動點.”改為“點是拋物線上的任一動點”,其它條件不變,當以、、、為頂點的四邊形為梯形時,直接寫出點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com