【題目】如圖(1),在Rt△ABC,∠ACB=90°,分別以AB、BC為一邊向外作正方形ABFG、BCED,連結AD、CF,AD與CF交于點M.
(1)求證:△ABD≌△FBC;
(2)如圖(2),已知AD=6,求四邊形AFDC的面積;
(3)在△ABC中,設BC=a,AC=b,AB=c,當∠ACB≠90°時,c2≠a2+b2 . 在任意△ABC中,c2=a2+b2+k.就a=3,b=2的情形,探究k的取值范圍(只需寫出你得到的結論即可).
【答案】
(1)
解:∵四邊形ABFG、BCED是正方形,
∴AB=FB,CB=DB,∠ABF=∠CBD=90°,
∴∠ABF+∠ABC=∠CBD+∠ABC,
即∠ABD=∠CBF,
在△ABD和△FBC中,
,
∴△ABD≌△FBC(SAS);
(2)
解:連接FD,設CF與AB交于點N,
∵△ABD≌△FBC,
∴AD=FC,∠BAD=∠BFC,
∴∠AMF=180°﹣∠BAD﹣∠CNA=180°﹣(∠BFC+∠BNF)=180°﹣90°=90°,
∴AD⊥CF,
∵AD=6,
∴FC=AD=6,
∴S四邊形AFDC=S△ACD+S△ACF+S△DMF﹣S△ACM,
= ADCM+ CFAM+ DMFM﹣ AMCM,
=3CM+3AM+ (6﹣AM)(6﹣CM)﹣ AMCM,
=18;
(3)
解:∵在△ABC中,設BC=a=3,AC=b=2,AB=c,
∴a﹣b<c<a+b,即1<c<5,
∴1<c2<25,即1<a2+b2+k=13+k<25,
解得:﹣12<k<12.
【解析】(1)根據(jù)四邊形ABFG、BCED是正方形得到兩對邊相等,一對直角相等,根據(jù)圖形利用等式的性質得到一對角相等,利用SAS即可得到三角形全等;(2)連接FD,由(1)的三角形全等,得到AD=FC,∠BAD=∠BFC,利用等式的性質及垂直定義得到AD與CF垂直,四邊形AFDC面積=三角形ACD面積+三角形ACF面積+三角形DMF面積﹣三角形ACM面積,求出即可;(3)根據(jù)a,b及c為三角形三邊長,利用兩邊之和大于第三邊,兩邊之差小于第三邊列出關于c的不等式,將a與b的值代入求出c的范圍,進而確定出c2的范圍,即a2+b2+k的范圍,即可求出k的范圍.
科目:初中數(shù)學 來源: 題型:
【題目】某玩具廠熟練工人工資為:每月底薪700元,加獎勵工資按件計算,一個月工作日為25天,每天工作8小時,加工1件A種玩具計酬10元,加工1件B種玩具計酬8元.在工作中發(fā)現(xiàn)一名熟練工人加工1件A種玩具和2件B種玩具需4小時,加工3件A種玩具和1件B種玩具需7小時.(工人月工資=底薪+計件工資)
(1)求熟練工人每加工一件A種玩具和一件B種玩具,分別需要多少時間?
(2)深圳市規(guī)定最低工資標準為每月2030元,但玩具廠規(guī)定:“每名工人每月必須加工A、B兩種工具,且加工A種玩具數(shù)量不少于B種玩具的一半”.若設一名熟練工人每月加工A種玩具a件,工資總額為w元,請你運用所學知識判斷該公司在執(zhí)行規(guī)定后是否違背了深圳市最低工資標準?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某游泳池有水4000m3 , 先放水清洗池子.同時,工作人員記錄放水的時間x(單位:分鐘)與池內(nèi)水量y(單位:m3) 的對應變化的情況,如下表:
時間x(分鐘) | … | 10 | 20 | 30 | 40 | … |
水量y(m3) | … | 3750 | 3500 | 3250 | 3000 | … |
(1)根據(jù)上表提供的信息,當放水到第80分鐘時,池內(nèi)有水多少m3?
(2)請你用函數(shù)解析式表示y與x的關系,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明在樓上點A處測量大樹的高,在A處測得大樹頂部B的仰角為25°,測得大樹底部C的俯角為45°.已知點A距地面的高度AD為12m,求大樹的高度BC.(最后結果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB=2,BC=4,AD=6,M是CD的中點,點P在直角梯形的邊上沿A→B→C→M運動,則△APM的面積y與點P經(jīng)過的路程x之間的函數(shù)關系用圖象表示是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段AB=10,AC=BD=2,點P是CD上一動點,分別以AP、PB為邊向上、向下作正方形APEF和PHKB,設正方形對角線的交點分別為O1、O2 , 當點P從點C運動到點D時,線段O1O2中點G的運動路徑的長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線a∥b,直線c與a、b都相交,從所標識的∠1、∠2、∠3、∠4、∠5這五個角中任意選取兩個角,則所選取的兩個角互為補角的概率是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自古以來,釣魚島及其附屬島嶼都是我國固有領土.如圖,為了開發(fā)利用海洋資源,我勘測飛機測量釣魚島附屬島嶼之一的北小島(又稱為鳥島)兩側端點A、B的距離,飛機在距海平面垂直高度為100米的點C處測得端點A的俯角為60°,然后沿著平行于AB的方向水平飛行了800米,在點D測得端點B的俯角為45°,求北小島兩側端點A、B的距離.
(結果精確到0.1米,參考數(shù) ≈1.73, ≈1.41)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com