(2011•鎮(zhèn)海區(qū)模擬)如圖,半徑為3的動(dòng)圓⊙P,其圓心點(diǎn)P可在二支雙曲線y=
6x
上任意運(yùn)動(dòng),當(dāng)⊙P與某一坐標(biāo)軸相切時(shí),寫(xiě)出所有這樣的點(diǎn)P的坐標(biāo)
(2,3)或(3,2)或(-2,-3)或(-3,-2)
(2,3)或(3,2)或(-2,-3)或(-3,-2)
分析:根據(jù)圓在雙曲線的兩支上,與x標(biāo)軸、y軸相切,分情況進(jìn)行討論計(jì)算.
解答:解:①當(dāng)⊙P在第一象限,與x軸相切時(shí),y=3,
6
x
=3,
解得x=2,
與y軸相切時(shí),x=3,
∴y=
6
3
=2,
∴點(diǎn)P的坐標(biāo)是(2,3)或(3,2);
②當(dāng)⊙P在第三象限,與x軸相切時(shí),y=-3,
6
x
=-3,
解得x=-2,
與y軸相切時(shí),x=-3,
∴y=
6
-3
=-2,
∴點(diǎn)P的坐標(biāo)是(-2,-3)或(-3,-2).
綜上所述,點(diǎn)P的坐標(biāo)是(2,3)或(3,2)或(-2,-3)或(-3,-2).
故答案為:(2,3)或(3,2)或(-2,-3)或(-3,-2).
點(diǎn)評(píng):此題主要考查了直線與圓相切的性質(zhì)以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)性質(zhì),分情況把圓的半徑的值看成點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)的值代入解析式求解是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•鎮(zhèn)海區(qū)模擬)下列圖形中,既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•鎮(zhèn)海區(qū)模擬)△OAB是直角三角形,∠AOB=30°,過(guò)A作AP⊥OB于P,在AP延長(zhǎng)線上取一點(diǎn)C,使∠BOC=30°;過(guò)P作PQ⊥OC于P,在PQ延長(zhǎng)線上取一點(diǎn)D,使∠COD=30°;…;按此方法操作,最終得到△OMN,此時(shí)ON在OA上.若AB=2a,則ON=
4×(
3
2
11a
4×(
3
2
11a
.(可用式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•鎮(zhèn)海區(qū)模擬)如圖,已知⊙O的直徑AB垂直于點(diǎn)E,連接CO并延長(zhǎng)交BD于點(diǎn)F,若CF⊥BD,AB=8,
(1)求證:BD=CD;
(2)求弦CD的長(zhǎng);
(3)求圖中由線段CD、BD和弧BC所圍成的陰影部分圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•鎮(zhèn)海區(qū)模擬)為了保護(hù)環(huán)境,積極開(kāi)發(fā)、應(yīng)用新型清潔能源,國(guó)家決定對(duì)太陽(yáng)能設(shè)備生產(chǎn)企業(yè)實(shí)行政府補(bǔ)貼,規(guī)定每銷(xiāo)售一臺(tái)太陽(yáng)能熱水器,政府補(bǔ)貼若干元給生產(chǎn)企業(yè).經(jīng)調(diào)查某公司每月出售太陽(yáng)能熱水器y(臺(tái))與補(bǔ)貼款額x(元)之間大致滿足如圖①所示的一次函數(shù)關(guān)系式.隨著補(bǔ)貼款額x的不斷增大,銷(xiāo)售量也不斷增加,但每臺(tái)太陽(yáng)能熱水器的收益z(元)會(huì)相應(yīng)降低且z與x之間也大致滿足如圖②所示的一次函數(shù)關(guān)系.
(1)在政府未出臺(tái)補(bǔ)貼措施前,該公司每月銷(xiāo)售太陽(yáng)能熱水器的總收益額為多少元?
(2)在政府補(bǔ)貼政策實(shí)施后,分別求出該公司每月銷(xiāo)售太陽(yáng)能熱水器臺(tái)數(shù)y、每臺(tái)太陽(yáng)能熱水器的收益z關(guān)于政府補(bǔ)貼款額x之間的函數(shù)關(guān)系式;
(3)要使該公司每月銷(xiāo)售太陽(yáng)能熱水器的總收益w(元)最大,政府應(yīng)將每臺(tái)補(bǔ)貼款額x定為多少元?并求出總收益w的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案