如圖,拋物線軸于A、B兩點(A點在B點左側(cè)),交軸于點C,已知B(8,0),,△ABC的面積為8.

【小題1】求拋物線的解析式;
【小題2】若動直線EF(EF∥軸)從點C開始,以每秒1個長度單位的速度沿軸負方向平移,且交軸、線段BC于E、F兩點,動點P同時從點B出發(fā),在線段OB上以每秒2個單位的速度向原點O運動。連結(jié)FP,設運動時間秒。當為何值時,的值最大,并求出最大值;
【小題3】在滿足(2)的條件下,是否存在的值,使以P、B、F為頂點的三角形與△ABC相似。若存在,試求出的值;若不存在,請說明理由。

【小題1】由題意知 ∠COB = 90°B(8,0)  OB="8" 在Rt△OBC中tan∠ABC =   
OC= OB×tan∠ABC = 8×="4" ∴C(0,4) 
   ∴AB =" 4 " A(4,0)
把A、B、C三點的坐標帶入解得 
所以拋物線的解析式為。
【小題2】C ( 0, 4 )  B ( 8, 0 )  E ( 0, 4-t ) ( t > 0)
OC =" 4 " OB =" 8 " CE =" t " BP="2t " OP ="8-2t "
∵EF // OB∴△CEF~△COB
 則有    得 EF =" 2t"
=
當t=2時有最大值2.
【小題3】存在符合條件的t值,使△PBF與△ABC相似。
C ( 0, 4 )  B ( 8, 0 )  E ( 0, 4-t )  F(2t , 4 - t )  P ( 8-2t , 0 )
( t > 0)
AB =" 4  " BP="2t " BF =
∵ OC =" 4 " OB =" 8"  ∴BC =  
①當點P與A、F與C對應  則,代入得   解得 
②當點P與C、F與A對應  則,代入得  解得(不合題意,舍去)
綜上所述:符合條件的。解析:
p;【解析】略
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,拋物線軸于A、B兩點(A點在B點左側(cè)),交軸于點C,已知B(8,0),,△ABC的面積為8.

(1)求拋物線的解析式;

(2)若動直線EF(EF∥軸)從點C開始,以每秒1個長度單位的速度沿軸負方向平移,且交軸、線段BC于E、F兩點,動點P同時從點B出發(fā),在線段OB上以每秒2個單位的速度向原點O運動。連結(jié)FP,設運動時間秒。當為何值時,的值最大,并求出最大值;

(3)在滿足(2)的條件下,是否存在的值,使以P、B、F為頂點的三角形與△ABC相似。若存在,試求出的值;若不存在,請說明理由。     

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆湖北省天門市十一校九年級4月聯(lián)考數(shù)學試卷(帶解析) 題型:填空題

如圖,拋物線軸于點,交軸于點,在軸上方的拋物線上有兩點,它們關于軸對稱,點軸左側(cè).于點于點,四邊形與四邊形的面積分別為6和10,則的面積之和為    

查看答案和解析>>

科目:初中數(shù)學 來源:2013年江蘇省東臺市實驗中學中考數(shù)學模擬試卷(帶解析) 題型:解答題

如圖,拋物線軸于A、B兩點,交軸于點C,
點P是它的頂點,點A的橫坐標是3,點B的橫坐標是1.

(1)求的值;
(2)求直線PC的解析式;
(3)請?zhí)骄恳渣cA為圓心、直徑為5的圓與直線PC的位置關系,并說明理由.
(參考數(shù)據(jù),

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年重慶市初九年級上學期第二次階段測數(shù)學試卷(解析版) 題型:解答題

如圖,拋物線軸于兩點(的左側(cè)),交軸于點,頂點為。

(1)求點的坐標;

(2)求四邊形的面積;

(3)拋物線上是否存在點,使得,若存在,請求出點的坐標;若不存在,請說明理由。

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年安徽省中考壓軸題預測試數(shù)學卷 題型:選擇題

如圖,拋物線軸于A、B兩點(A點在B點左側(cè)),交軸于點C,已知B(8,0),,△ABC的面積為8.

1.求拋物線的解析式;

2.若動直線EF(EF∥軸)從點C開始,以每秒1個長度單位的速度沿軸負方向平移,且交軸、線段BC于E、F兩點,動點P同時從點B出發(fā),在線段OB上以每秒2個單位的速度向原點O運動。連結(jié)FP,設運動時間秒。當為何值時,的值最大,并求出最大值;

3.在滿足(2)的條件下,是否存在的值,使以P、B、F為頂點的三角形與△ABC相似。若存在,試求出的值;若不存在,請說明理由。

 

查看答案和解析>>

同步練習冊答案