直線ly軸于點C,與雙曲線交于AB兩點,P是線段AB上的點(不與A、B重合),過點A、P、Q(Q在直線l上)分別向x軸作垂線,垂足分別為D、EF,連接OA、OPOQ,設(shè)△AOD

的面積為S1,△POE的面積為S2,△QOF的面積為S3,則S1、S2、S3的大小關(guān)系為                           (    ).

A.S1=S2=S3     B.S3<S1<S2     C.S1<S3<S2     D.不能確定

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線y=-x2+2mx-m2-m+2.
(1)判斷拋物線的頂點與直線L:y=-x+2的位置關(guān)系;
(2)設(shè)該拋物線與x軸交于M、N兩點,當(dāng)OM•ON=4,且OM≠ON時,求出這條拋物線的解析式;
(3)直線L交x軸于點A,(2)中所求拋物線的對稱軸與x軸交于點B.那么在對稱軸上是否存在點P,使⊙P與直線L和x軸同時相切?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y1=2x與雙曲線y2=
8x
相交于點A、E.另一直線y3=x+b與雙曲線交于點A、B,與x、y精英家教網(wǎng)軸分別交于點C、D.直線EB交x軸于點F.
(1)求A、B兩點的坐標(biāo),并比較線段OA、OB的長短;
(2)由函數(shù)圖象直接寫出函數(shù)y2>y3>y1的自變量x的取值范圍;
(3)求證:△COD∽△CBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
mx
的圖象交于A(-2,1),B(1,n)兩點.
求:(1)m的值;
(2)求一次函數(shù)的解析式;
(3)若直線AB交x軸于點C,求△OBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,經(jīng)過原點的拋物線y=x2-2mx與x軸的另一個交點為A.過點P(m+1,
1
2
)作直線PH⊥y軸于點H,直線AP交y軸于點C.(點C不與點H重合)
(1)當(dāng)m=2時,求點A的坐標(biāo)及CO的長.
(2)當(dāng)m>1時,問m為何值時CO=
3
2
?
(3)是否存在m,使CO=2.5HC?若存在,求出所有滿足要求的m的值,并定出相對應(yīng)的點C坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點D(6,1)是反比例函數(shù)y=
kx
(k≠0)圖象上的一點,點C是該函數(shù)在第三象限分支上的動點,過C、D分別作CA⊥x軸,DB⊥y軸,垂足分別為A、B,連結(jié)AB,BC.
(1)求k的值;
(2)若△BCD的面積為12,求直線CD的解析式;
(3)設(shè)直線CD交x軸于點E,求證:不管點C如何運動,總有△AOB∽△EAC.

查看答案和解析>>

同步練習(xí)冊答案