(1)解:過B作BE⊥x軸于E,
則∠BEC=∠ACB=∠AOC=90°,
∴∠1+∠2=90°,∠1+∠OAC=90°,
∴∠2=∠OAC,
在△AOC和△CEB中
∵
,
∴△AOC≌△CEB(AAS),
∴OA=CE,OC=BE,
∵A(0,-2),C(1,0),
∴OA=CE=2,OC=BE=1,
∴OE=1+2=3,
∴點(diǎn)B的坐標(biāo)為( 3,-1 );
(2)結(jié)論:
,
證明:作BE⊥x軸于E,
∴∠1=90°=∠2,
∴∠3+∠4=90°,
∵∠ACB=90°,
∴∠5+∠3=90°,
∴∠5=∠4,
在△CEB和△AOC中,
∵
∴△CEB≌△AOC,
∴AO=CE,
∵BE⊥x軸于E,
∴BE∥y軸,
∵BD⊥y軸于點(diǎn)D,EO⊥y軸于點(diǎn)O,
∴BD∥OE,
∴四邊形OEBD是矩形,
∴EO=BD,
∴OC-BD=OC-EO=CE=AO,
∴
.
分析:(1)過B作BE⊥x軸于E,推出∠2=∠OAC,∠AOC=∠BEC,根據(jù)AAS證△AOC≌△CEB,推出OA=CE,OC=BE,根據(jù)A、C的坐標(biāo)即可求出答案;
(2)作BE⊥x軸于E,得出矩形OEBD,推出BD=OE,證△CEB≌△AOC,推出AO=CE,求出OC-BD=OA,代入求出即可.
點(diǎn)評:本題考查了全等三角形的性質(zhì)和判定,坐標(biāo)與圖形性質(zhì),等腰直角三角形性質(zhì),主要考查學(xué)生運(yùn)用定理進(jìn)行推理和計(jì)算,題目比較好.