【題目】如圖,在三角板ABC中,∠ACB=90°,∠A=30°,AC=6,將三角板ABC繞點C逆時針旋轉(zhuǎn),當(dāng)起始位置時的點B恰好落在邊A1B1上時,A1B的長為

【答案】2
【解析】解:∵∠ACB=90°,∠A=30°,AC=6, ∴∠B=60°,BC= AC=2 ,AB=4
∵由旋轉(zhuǎn)的性質(zhì)可知:∠B1=∠B=60°,B1C=BC,A1B1=AB=4 ,
∴△BCB1是等邊三角形.
∴BB1=BC=2
∴BA1=A1B1﹣B1B=4 ﹣2 =2
所以答案是:2
【考點精析】解答此題的關(guān)鍵在于理解旋轉(zhuǎn)的性質(zhì)的相關(guān)知識,掌握①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長為12,D,EBC的三等分點,M,N分別為AB,AC上的動點,則四邊形DENM周長的最小值是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)運用完全平方公式計算:992

(2)先化簡,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中 x=,y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 6×6 的網(wǎng)格中,四邊形 ABCD 的頂點都在格點上,每個格子都是邊長為 1 的正方形,建立如圖所示的平面直角坐標(biāo)系.

(1)畫出四邊形 ABCD 關(guān)于 y 軸對稱和四邊形 A′B′C′D′(點 A、B、C、D的對稱點分別是點 A′B′C′D′.

(2)求 A、B′、B、C 四點組成和四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A 和 B 兩地在一條河的兩岸,現(xiàn)要在河上造一座橋 MN.橋造在何處才能使從 A 到 B 的路徑 AMNB 最短?在下圖中畫出路徑,不寫畫法但要說明理由.(假定河的兩岸是平行的直線,橋要與河垂直.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖直線 a,b,c 表示三條相互交叉而建的公路現(xiàn)在要建立一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:若關(guān)于x的一元一次方程ax=b的解為b+a,則稱該方程為“和解方程”. 例如:方程2x=﹣4的解為x=﹣2,而﹣2=﹣4+2,則方程2x=﹣4為“和解方程”.

請根據(jù)上述規(guī)定解答下列問題:

(1)已知關(guān)于x的一元一次方程3x=m是“和解方程”,求m的值;

(2)已知關(guān)于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式 12=1= ×1×2×(2+1)
12+22= ×2×3×(4+1)
12+22+32= ×3×4×(6+1)
12+22+32+42= ×4×5×(8+1)…
可以推測12+22+32+…+n2=

查看答案和解析>>

同步練習(xí)冊答案