【題目】如圖,A 和 B 兩地在一條河的兩岸,現(xiàn)要在河上造一座橋 MN.橋造在何處才能使從 A 到 B 的路徑 AMNB 最短?在下圖中畫出路徑,不寫畫法但要說明理由.(假定河的兩岸是平行的直線,橋要與河垂直.)

【答案】見解析

【解析】

雖然A、B兩點在河兩側(cè)但連接AB的線段不垂直于河岸.關(guān)鍵在于使AM+BN最短,但AMBN未連起來,要利用線段公理就要想辦法使MN重合起來,利用平行四邊形的特征可以實現(xiàn)這一目的.

解:如圖,作 BB'垂直于河岸 GH,使 BB′等于河寬, 連接 AB′,與河岸 EF 相交于 M,作 MNGH,

MNBB′ MN=BB′,

于是 MNBB′為平行四邊形,故 NB=MB′.

根據(jù)兩點之間線段最短”,AB′最短,即 AM+BN 最短.

故橋建立在 MN 處符合題意.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在日歷上,我們可以發(fā)現(xiàn)其中某些數(shù)滿足一定的規(guī)律.如圖是201812月份的日歷,我們?nèi)我膺x擇其中所示的十字形部分,將每個部分中間數(shù)的左右兩數(shù),上下兩數(shù)分別相乘,再把所得的結(jié)果相減.

(1)計算:11×13-5×19;16×18–10×24;(直接寫結(jié)果)

(2)請你用整式的運算對以上的規(guī)律加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗室需要一批無蓋的長方體模型,一張大紙板可以做成長方體的側(cè)面30個,或長方體的底面25個,一個無蓋的長方體由4個側(cè)面和一個底面構(gòu)成. 現(xiàn)有26張大紙板,則用多少張做側(cè)面,多少張做底面才可以使得剛好配套,沒有剩余?

反思:應用二元一次方程組解應用題時,要注意解題的步驟,解、設(shè)、答一個不能少,而由于未知數(shù)有兩個,則必須根據(jù)題意找出兩個等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按要求畫圖,并回答問題:

如圖,在同一平面內(nèi)有三點A,B,C

(1)畫直線AC

(2)畫射線CB;

(3)過點B作直線AC的垂線BD,垂足為D

(4)畫線段AB及線段AB的中點E,連接DE

(5)通過畫圖和測量,與線段DE長度相等的線段有__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在三角板ABC中,∠ACB=90°,∠A=30°,AC=6,將三角板ABC繞點C逆時針旋轉(zhuǎn),當起始位置時的點B恰好落在邊A1B1上時,A1B的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上有點a,b,c三點

(1)用“<”將a,b,c連接起來.

(2)b﹣a   1(填“<”“>”,“=”)

(3)化簡|c﹣b|﹣|c﹣a+1|+|a﹣1|

(4)用含a,b的式子表示下列的最小值:

①|(zhì)x﹣a|+|x﹣b|的最小值為   ;

②|x﹣a|+|x﹣b|+|x+1|的最小值為   ;

③|x﹣a|+|x﹣b|+|x﹣c|的最小值為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點,點P在線段OA上,從點A以1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發(fā),向點B以 個單位/秒的速度勻速運動,連接PQ,設(shè)運動時間為t秒.

(1)求拋物線的解析式;
(2)當t為何值時,△APQ為直角三角形;
(3)過點P作PE∥y軸,交AB于點E,過點Q作QF∥y軸,交拋物線于點F,連接EF,當EF∥PQ時,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的弦,C是劣弧 的中點,連BO并延長交⊙O于點D,連接CA,CB,AB與CD交于點F,已知CF=1,F(xiàn)D=2.
(1)求CB的長;
(2)延長DB到E,使BE=OB,連接CE,求證:CE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AC與BD是圓的直徑,BE⊥AC,CF⊥BD,垂足分別為E、F
(1)四邊形ABCD是什么特殊的四邊形?請判斷并說明理由;
(2)求證:BE=CF.

查看答案和解析>>

同步練習冊答案