【題目】如圖,用一個(gè)平面去截一個(gè)正方體,如果截去的幾何體是一個(gè)三棱錐,請回答下列問題:
(1)截面一定是什么圖形?
(2)剩下的幾何體可能有幾個(gè)頂點(diǎn)?
【答案】(1)三角形;(2)剩下的幾何體可能有7個(gè)頂點(diǎn)、或8個(gè)頂點(diǎn)、或9個(gè)頂點(diǎn)、或10個(gè)頂點(diǎn).
【解析】
(1)如果截去的幾何體是一個(gè)三棱錐,那么截面一定是一個(gè)三角形;
(2)當(dāng)截面截取由三個(gè)頂點(diǎn)組成的面時(shí)可以得到三角形,剩下的幾何體有7個(gè)點(diǎn),當(dāng)截面截取一棱的一點(diǎn)和兩底點(diǎn)組成的面時(shí)可剩下幾何體有8個(gè)點(diǎn),當(dāng)截面截取由2條棱中點(diǎn)和一頂點(diǎn)組成的面時(shí)剩下幾何體有9個(gè)頂點(diǎn).當(dāng)截面截取由三棱中點(diǎn)組成的面時(shí),剩余幾何體有10個(gè)頂點(diǎn).
(1)如果截去的幾何體是一個(gè)三棱錐,那么截面一定是一個(gè)三角形;
(2)剩下的幾何體可能有7個(gè)頂點(diǎn)、或8個(gè)頂點(diǎn)、或9個(gè)頂點(diǎn)、或10個(gè)頂點(diǎn),如圖所示:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列請寫出下列幾何體,并將其分類.(只填寫編號(hào))
如果按“柱”“錐”“球”來分,柱體有_____,椎體有_____,球有_____;
如果按“有無曲面”來分,有曲面的有_____,無曲面的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中(如圖每格一個(gè)單位),描出下列各點(diǎn)A(﹣2,﹣1),B(2,﹣1),C(2,2),D(3,2),E(0,3),F(xiàn)(﹣3,2),G(﹣2,2),A(﹣2,﹣1)并依次將各點(diǎn)連接起來,觀察所描出的圖形,它像什么?根據(jù)圖形回答下列問題:
(1)圖形中哪些點(diǎn)在坐標(biāo)軸上,它們的坐標(biāo)有什么特點(diǎn)?
(2)線段FD和x軸有什么位置關(guān)系?點(diǎn)F和點(diǎn)D的坐標(biāo)有什么特點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場有A,B兩種商品,若買2件A商品和1件B商品,共需80元;若買3件A商品和2件B商品,共需135元.
(1)設(shè)A,B兩種商品每件售價(jià)分別為a元、b元,求a、b的值;
(2)B商品每件的成本是20元,根據(jù)市場調(diào)查:若按(1)中求出的單價(jià)銷售,該商場每天銷售B商品100件;若銷售單價(jià)每上漲1元,B商品每天的銷售量就減少5件. ①求每天B商品的銷售利潤y(元)與銷售單價(jià)(x)元之間的函數(shù)關(guān)系?
②求銷售單價(jià)為多少元時(shí),B商品每天的銷售利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知O是直線AB上一點(diǎn),將一直角三角尺如圖QZ-13(a)放置,一直角邊ON在直線AB上,另一直角邊OM與AB所形成的∠AOM=90°,射線OC在∠AOM內(nèi)部.
(探究)如圖(b),將三角尺繞著點(diǎn)O順時(shí)針旋轉(zhuǎn),當(dāng)∠AON=∠CON時(shí),試判斷OM是否平分∠BOC,并說明理由.
(拓展)若∠AOC=80°時(shí),三角尺OMN繞O點(diǎn)順時(shí)針旋轉(zhuǎn)一周,每秒旋轉(zhuǎn)5°,則多少秒后,∠MOC=∠MOB?
(延伸)在上述條件下,如圖(c),旋轉(zhuǎn)三角尺使ON在∠BOC內(nèi)部,另一邊OM在直線AB的另一側(cè),下面兩個(gè)結(jié)論:①∠NOC-∠BOM的值不變;②∠NOC+∠BOM的值不變.選擇其中一個(gè)正確的結(jié)論說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,把△ADE沿AE折疊得△AED’,若∠BAD’=30.
(1)求∠AED’的度數(shù);
(2)把△AED’繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)60得△AD1E1,畫出△AD1E1;
(3)直接寫出∠AD1E和∠E1D1E.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A( ,1)在反比例函數(shù)y= 的圖象上.
(1)求k的值;
(2)若將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°,得到△BDE,判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖中的小方格都是邊長為1的正方形,△ABC的頂點(diǎn)坐標(biāo)分別為:A(-3,0),B(-1,-2),C(-2,2).
(1)請?jiān)趫D中畫出△ABC繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°后的圖形△A′BC′.
(2)請直接寫出以A′、B、C′為頂點(diǎn)平行四邊形的第4個(gè)頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列解題過程,然后解答問題
解方程:|x+3|=2.
解:當(dāng)x+3≥0時(shí),原方程可化為:x+3=2,解得x=﹣1
當(dāng)x+3<0時(shí),原方程可化為:x+3=﹣2,解得x=﹣5
所以原方程的解是x=﹣1,x=﹣5
(1)解方程:|3x﹣2|﹣4=0;
(2)探究:當(dāng)b為何值時(shí),方程|x﹣2|=b ①無解;②只有一個(gè)解;③有兩個(gè)解.
(3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com