(2009•南寧)如圖,PA、PB是半徑為1的⊙O的兩條切線,點A、B分別為切點,∠APB=60°,OP與弦AB交于點C,與⊙O交于點D.
(1)在不添加任何輔助線的情況下,寫出圖中所有的全等三角形;
(2)求陰影部分的面積(結果保留π).

【答案】分析:(1)中根據(jù)圓的切線的性質(zhì)及對稱性,可確定圖中的全等三角形;
(2)陰影部分的面積可轉化為扇形面積從而利用公式進行計算.
解答:解:(1)△ACO≌△BCO,△APC≌△BPC,△PAO≌△PBO;

(2)∵PA、PB為⊙O的切線,
∴PO平分∠APB,PA=PB,∠PAO=90°,
∴PO⊥AB,(6分)
∴由圓的對稱性可知:S陰影=S扇形AOD,
∵在Rt△PAO中,∠APO=∠APB=×60°=30°,
∴∠AOP=90°-∠APO=90°-30°=60°,
∴S陰影=S扇形AOD=
=
點評:主要考查了圓的對稱性和扇形的面積公式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《四邊形》(01)(解析版) 題型:選擇題

(2009•南寧)如圖,將一個長為10cm,寬為8cm的矩形紙片對折兩次后,沿所得矩形兩鄰邊中點的連線(虛線)剪下,再打開,得到的菱形的面積為( )

A.10cm2
B.20cm2
C.40cm2
D.80cm2

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省梅州市數(shù)學總復習測試卷(12) 綜合二(解析版) 題型:解答題

(2009•南寧)如圖,PA、PB是半徑為1的⊙O的兩條切線,點A、B分別為切點,∠APB=60°,OP與弦AB交于點C,與⊙O交于點D.
(1)在不添加任何輔助線的情況下,寫出圖中所有的全等三角形;
(2)求陰影部分的面積(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源:2010年初中數(shù)學第一輪復習教學案例8.2 與圓有關的角(解析版) 題型:選擇題

(2009•南寧)如圖,AB是⊙O的直徑,弦CD⊥AB于點E,∠CDB=30°,⊙O的半徑為cm,則弦CD的長為( )
A.cm
B.3cm
C.2cm
D.9cm

查看答案和解析>>

科目:初中數(shù)學 來源:2010年初中數(shù)學第一輪復習教學案例6.2 特殊平行四邊形(解析版) 題型:選擇題

(2009•南寧)如圖,將一個長為10cm,寬為8cm的矩形紙片對折兩次后,沿所得矩形兩鄰邊中點的連線(虛線)剪下,再打開,得到的菱形的面積為( )

A.10cm2
B.20cm2
C.40cm2
D.80cm2

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣西南寧市中考數(shù)學試卷(解析版) 題型:填空題

(2009•南寧)如圖,一艘海輪位于燈塔P的東北方向,距離燈塔40海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東30°方向上的B處,則海輪行駛的路程AB為    海里(結果保留根號).

查看答案和解析>>

同步練習冊答案