【題目】暑假期間,某學(xué)校計劃用彩色的地面磚鋪設(shè)教學(xué)樓門前一塊矩形操場ABCD的地面.已知這個矩形操場地面的長為100m,寬為80m,圖案設(shè)計如圖所示:操場的四角為小正方形,陰影部分為四個矩形,四個矩形的寬都為小正方形的邊長,在實(shí)際鋪設(shè)的過程總,陰影部分鋪紅色地面磚,其余部分鋪灰色地面磚.
(1)如果操場上鋪灰色地面磚的面積是鋪紅色地面磚面積的4倍,那么操場四角的每個小正方形邊長是多少米?
(2)如果灰色地面磚的價格為每平方米30元,紅色地面磚的價格為每平方米20元,學(xué),F(xiàn)有15萬元資金,問這些資金是否能購買所需的全部地面磚?如果能購買所學(xué)的全部地面磚,則剩余資金是多少元?如果不能購買所需的全部地面磚,教育局還應(yīng)該至少給學(xué)校解決多少資金?
【答案】(1)操場四角的每個小正方形邊長是5米;
(2)這些資金不能購買所需的全部地面磚,教育局還應(yīng)該至少給學(xué)校解決19.95﹣15=4.95萬元資金.
【解析】
試題分析:(1)設(shè)小正方形的邊長為x米,表示出里邊大矩形的長為(100﹣2x)米,寬為(80﹣2x)米,利用灰色部分的面積=4個小正方形的面積+里邊大矩形的面積,紅色部分面積=上下兩個矩形面積+左右兩個矩形面積,根據(jù)灰色地面磚的面積是鋪紅色地面磚面積的4倍列出關(guān)于x的方程,求出方程的解得到x的值,即為小正方形的邊長;
(2)設(shè)鋪矩形廣場地面的總費(fèi)用為y元,廣場四角的小正方形的邊長為x米,根據(jù)等量關(guān)系“總費(fèi)用=鋪白色地面磚的費(fèi)用+鋪綠色地面磚的費(fèi)用”列出y關(guān)于x的函數(shù),求得最小值,與15萬元比較可得是否夠用.
試題解析:(1)設(shè)操場四角的每個小正方形邊長是x米,根據(jù)題意,
得:4x2+(100﹣2x)(80﹣2x)=4[2x(100﹣2x)+2x(80﹣2x)],
整理,得:x2﹣45x+200=0,
解得:x1=5,x2=40(舍去),
故操場四角的每個小正方形邊長是5米;
(2)設(shè)鋪矩形廣場地面的總費(fèi)用為y元,廣場四角的小正方形的邊長為x米,
則,y=30×[4x2+(100﹣2x)(80﹣2x)]+20×[2x(100﹣2x)+2x(80﹣2x)]
即:y=80x2﹣3600x+240000
配方得,y=80(x﹣22.5)2+199500
當(dāng)x=22.5時,y的值最小,最小值為19.95萬元>15萬元,
故這些資金不能購買所需的全部地面磚,教育局還應(yīng)該至少給學(xué)校解決19.95﹣15=4.95萬元資金.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是重疊的兩個直角三角形,將三角形ABC沿AB方向平移2cm后,得到三角形DEF,若CH=2cm,EF=4cm,則圖中陰影部分面積為cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知當(dāng)x=-1時,代數(shù)式2mx3-3mx+6的值為7,若關(guān)于y的方程2my+n=11-ny-m的解為y=2,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準(zhǔn)備修建一個面積為20m2的矩形花圃,它的長比寬多10m.設(shè)花圃的寬為xm,則可列方程為( )
A.x(x﹣10)=20
B.2x+2(x﹣10)=20
C.x(x+10)=20
D.2x+2(x+10)=20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個數(shù)均為其上方左右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個數(shù)1,2,1,恰好對應(yīng)(a+b)2=a2+2ab+b2展開式中的系數(shù);第四行的四個數(shù)1,3,3,1,恰好對應(yīng)著(a+b)3=a3+3a2b+3ab2+b2展開式中的系數(shù)等等.
(1)根據(jù)上面的規(guī)律,則(a+b)5的展開式= .
(2)利用上面的規(guī)律計算:25﹣5×24+10×23﹣10×22+5×2﹣1= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)P(2m-1,6m-5)在第一象限的角平分線OC 上,AP⊥BP,點(diǎn)A在x軸上,點(diǎn) B在y 軸上.
(1)求點(diǎn)P 的坐標(biāo);
(2)當(dāng)∠APB繞點(diǎn)P旋轉(zhuǎn)時,OA+OB的值是否發(fā)生變化?若變化,求出其變化范圍;若不變,求出這個定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列從左到右的變形是因式分解的是( 。
A. (﹣a+b)2=a2﹣2ab+b2 B. m2﹣4m+3=(m﹣2)2﹣1
C. ﹣a2+9b2=﹣(a+3b)(a﹣3b) D. (x﹣y)2=(x+y)2﹣4xy
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個長為2a,寬為2b的長方形(a>b),沿圖中虛線用剪刀均勻分成四塊相同小長方形,然后按圖2方式拼成一個大正方形
(1)你認(rèn)為圖2中大正方形的邊長為;小正方形(陰影部分)的邊長為 . (用含a、b代數(shù)式表示)
(2)仔細(xì)觀察圖2,利用圖2中存在的面積關(guān)系,直接寫出下列三個代數(shù)式:(a﹣b)2 , (a+b)2 , 4ab之間的等量關(guān)系
(3)利用(2)中得出的結(jié)論解決下面的問題:已知a+b=7,ab=6,求代數(shù)式(a﹣b)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面四個整式中,不能表示圖中陰影部分面積的是( )
A.(x+3)(x+2)﹣2x
B.x(x+3)+6
C.3(x+2)+x2
D.x2+5x
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com