【題目】如圖,已知拋物線y=ax2+bx+c與x軸交于A、B兩點,頂點C的縱坐標為﹣2,現(xiàn)將拋物線向右平移2個單位,得到拋物線y=a1x2+b1x+c1,則下列結論正確的是 .(寫出所有正確結論的序號)
①b>0
②a﹣b+c<0
③陰影部分的面積為4
④若c=﹣1,則b2=4a.
【答案】③④
【解析】
試題①首先根據拋物線開口向上,可得a>0;然后根據對稱軸為x=﹣>0,可得b<0,據此判斷即可.②根據拋物線y=ax2+bx+c的圖象,可得x=﹣1時,y>0,即a﹣b+c>0,據此判斷即可.③首先判斷出陰影部分是一個平行四邊形,然后根據平行四邊形的面積=底×高,求出陰影部分的面積是多少即可.④根據函數的最小值是,判斷出c=﹣1時,a、b的關系即可.∵拋物線開口向上,
∴a>0,又∵對稱軸為x=﹣>0,∴b<0,∴結論①不正確;
∵x=﹣1時,y>0,∴a﹣b+c>0,∴結論②不正確;
∵拋物線向右平移了2個單位,∴平行四邊形的底是2,∵函數y=ax2+bx+c的最小值是y=﹣2,
∴平行四邊形的高是2,∴陰影部分的面積是:2×2=4,∴結論③正確;
∵,c=﹣1,∴b2=4a,∴結論④正確.
科目:初中數學 來源: 題型:
【題目】函數y1=x(x≥0),y2=(x>0)的圖象如圖6-Z-6所示,則下列結論:
①兩函數圖象的交點A的坐標為(2,2);
②當x>2時,y1>y2;
③當x=1時,BC=3;
④當x逐漸增大時,y1隨著x的增大而增大,y2隨著x的增大而減。
其中正確結論的序號是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖 1,已知點 F,G 分別在直線 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,則∠GEF 的度數為 ;
(2)拓展探究:∠GEF,∠BFE,∠CGE 之間有怎樣的數量關系?寫出結論并給出證明; 答:∠GEF= .
證明:過點 E 作 EH∥AB,
∴∠FEH=∠BFE( ),
∵AB∥CD,EH∥AB,(輔助線的作法)
∴EH∥CD( ),
∴∠HEG=180°-∠CGE( ),
∴∠FEG=∠HFG+∠FEH= .
(3)深入探究:如圖 2,∠BFE 的平分線 FQ 所在直線與∠CGE 的平分線相交于點 P,試探究∠GPQ 與∠GEF 之間的數量關系,請直接寫出你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,高AD和BE所在的直線交于點H,且BH=AC,則∠ABC等于( )
A. 45° B. 120° C. 45°或135° D. 45°或120°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數的圖象交坐標軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.
(1)求這個二次函數的解析式;
(2)是否存在點P,使△POC是以OC為底邊的等腰三角形?若存在,求出P點坐標;若不存在,請說明理由;
(3)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標和△PBC的最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下面三行數:
(1)第①行數按什么規(guī)律排列?
(2)第②③行數與第①行數分別有什么關系;
(3)設分別為第①②③行的2012個數,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A(0,b)、點B(a,0)、點D(d,0)且a、b、c滿足.DE⊥x軸且∠BED=∠ABD,BE交y軸于點C,AE交x軸于點F.
(1)求點A、B、D的坐標;
(2)求點C、E、F的坐標;
(3)如圖,過P(0,-1)作x軸的平行線,在該平行線上有一點Q(點Q在P的右側)使∠QEM=45°,QE交x軸于N,ME交y軸正半軸于M,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,中線BE,CD相交于點O,連接DE,下列結論:①=;②=;③=;④=.其中正確的個數為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com