【題目】如圖,若將△ABC繞點(diǎn)C逆時針旋轉(zhuǎn)90°后得到△A′B′C′,
(1)在圖中畫出△A′B′C′;
(2)求出點(diǎn)A經(jīng)過的路徑長.
【答案】
(1)
解:如圖,△A′B′C′為所作;
(2)
解:AC= = ,
所以點(diǎn)A經(jīng)過的路徑長= = π
【解析】(1)利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)畫出點(diǎn)A、B的對應(yīng)點(diǎn)A′、B′,從而得到△A′B′C′,(2)點(diǎn)A經(jīng)過的路徑為以點(diǎn)C為圓心,CA為半徑,圓心角為90°的弧,則根據(jù)弧長公式可計(jì)算出點(diǎn)A經(jīng)過的路徑長.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用弧長計(jì)算公式和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進(jìn)行計(jì)算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O(0,0),A(0,﹣6),B(8,0)三點(diǎn)在⊙P上.
(1)求圓的半徑及圓心P的坐標(biāo);
(2)M為劣弧 的中點(diǎn),求證:AM是∠OAB的平分線;
(3)連接BM并延長交y軸于點(diǎn)N,求N,M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在國務(wù)院辦公廳發(fā)布《中國足球發(fā)展改革總體方案》之后,某校為了調(diào)查本校學(xué)生對足球知識的了解程度,隨機(jī)抽取了部分學(xué)生進(jìn)行一次問卷調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖的統(tǒng)計(jì)圖,請根據(jù)圖中所給的信息,解答下列問題:
(1)本次接受問卷調(diào)查的學(xué)生總?cè)藬?shù)是;
(2)扇形統(tǒng)計(jì)圖中,“了解”所對應(yīng)扇形的圓心角的度數(shù)為 , m的值為;
(3)若該校共有學(xué)生1500名,請根據(jù)上述調(diào)查結(jié)果估算該校學(xué)生對足球的了解程度為“基本了解”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為13,弦AB∥CD,AB=24,CD=10,則AB、CD之間的距離為( )
A.17
B.7
C.12
D.7或17
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長線相交于點(diǎn)P,CE平分∠ACB,交AB于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)求證:△PCE是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有4個分別標(biāo)有數(shù)1,2,3,4的小球,它們的形狀、大小完全相同,小紅先從口袋里隨機(jī)摸出一個小球記下數(shù)為x,小穎在剩下的3個球中隨機(jī)摸出一個小球記下數(shù)為y,這樣確定了點(diǎn)P的坐標(biāo)(x,y).
(1)小紅摸出標(biāo)有數(shù)3的小球的概率是 .
(2)請你用列表法或畫樹狀圖法求點(diǎn)P(x,y)在函數(shù)y=﹣x+5圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點(diǎn),且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)若BC=8,DE=6,求△AEF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com