【題目】在一個不透明的布袋中裝有相同的三個小球,其上面分別標(biāo)注
數(shù)字1、2、3、,現(xiàn)從中任意摸出一個小球,將其上面的數(shù)字作為點M的橫坐標(biāo);將球放回
袋中攪勻,再從中任意摸出一個小球,將其上面的數(shù)字作為點M的縱坐標(biāo).
(1)寫出點M坐標(biāo)的所有可能的結(jié)果;
(2)求點M在直線y=x上的概率;
(3)求點M的橫坐標(biāo)與縱坐標(biāo)之和是偶數(shù)的概率.
【答案】(1)(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2);(3).
【解析】
(1)列表得:
1 | 2 | 3 | |
1 | (1,1) | (1,2) | (1,3) |
2 | (2,1) | (2,2) | (2,3) |
3 | (3,1) | (3,2) | (3,3) |
∴點M坐標(biāo)的所有可能的結(jié)果有九個:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3).
(2)P(點M在直線y=x上)=P(點M的橫、縱坐標(biāo)相等)==.
(3)列表如下:
1 | 2 | 3 | |
1 | 2 | 3 | 4/span> |
2 | 3 | 4 | 5 |
3 | 4 | 5 | 6 |
∴P(點M的橫坐標(biāo)與縱坐標(biāo)之和是偶數(shù))=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線上有三點、、,滿足,,,點從點出發(fā),沿方向以的速度勻速運動,點從點出發(fā)在線段上向點勻速運動,兩點同時出發(fā),當(dāng)點運動到點時,點、停止運動.
(1)若點運動速度為,經(jīng)過多長時間、兩點相遇?
(2)當(dāng)時,點運動到的位置恰好是線段的中點,求點的運動速度;
(3)設(shè)運動時間為,當(dāng)點運動到線段上時,分別取和的中點、,則____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你會玩“24點”游戲嗎?從一副撲克牌(去掉大、小王)中任意抽取四張,根據(jù)牌面上的數(shù)字進行混合運算(每一張牌必須用一次且只能用一次,可以加括號),使得運算結(jié)果為24或﹣24,其中紅色撲克牌代表負(fù)數(shù),黑色撲克牌代表正數(shù).J.Q.K.A分別代表11.12.13.1,小明抽到了黑桃7,黑桃3,梅花3,梅花7,他運用下面的方法湊成了:.
(1)如果抽到的是黑桃7,黑桃5,紅桃5,梅花7,你能湊成24嗎?
(2)如果抽到的是黑桃A,方塊2,黑桃2,黑桃3,你能湊成24嗎?(請用兩種方法)
(3)如果抽到的是黑桃Q,紅桃Q,梅花3,方塊A,你能湊成24嗎?(請用多種方法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我區(qū)的數(shù)學(xué)愛好者申請了一項省級課題——《中學(xué)學(xué)科核心素養(yǎng)理念下滲透數(shù)學(xué)美育的研究》,為了了解學(xué)生對數(shù)學(xué)美的了解情況,隨機抽取部分學(xué)生進行問卷調(diào)查,按照“理解、了解、不太了解、不知道”四個類型,課題組繪制了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中提供的信息,回答下列問題:
(1)本次調(diào)查共抽取了多少名學(xué)生?并補全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,“理解”所占扇形的圓心角是多少度?
(3)我區(qū)七年級大約8000名學(xué)生,請估計“理解”和“了解”的共有學(xué)生多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分別觀察下面的左、右兩組等式:
根據(jù)你發(fā)現(xiàn)的規(guī)律解決下列問題:
(1)填空:________;
(2)已知,則x的值是________;
(3)設(shè)滿足上面特征的等式最左邊的數(shù)為y,求y的最大值,并寫出此時的等式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保證達萬高速公路在2012年底全線順利通車,某路段規(guī)定在若干天內(nèi)完成修建任務(wù).已知甲隊單獨完成這項工程比規(guī)定時間多用10天,乙隊單獨完成這項工程比規(guī)定時間多用40天,如果甲、乙兩隊合作,可比規(guī)定時間提前14天完成任務(wù).若設(shè)規(guī)定的時間為x天,由題意列出的方程是(。
A.+=B.+=
C.-=D.+=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在直角梯形ABCD中, AD∥BC,∠BCD=90°, BC=CD=2AD , E、F分別是BC、CD邊的中點,連結(jié)BF、DE交于點P,連結(jié)CP并延長交AB于點Q,連結(jié)AF,則下列結(jié)論不正確的是( )
A.CP 平分∠BCDB.四邊形 ABED 為平行四邊形
C.CQ將直角梯形 ABCD 分為面積相等的兩部分D.△ABF為等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com