如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)P在⊙O上,PB與CD交于點(diǎn)F,∠PBC=∠C.
(1)求證:CB∥PD;
(2)若∠PBC=22.5°,⊙O的半徑R=2,求劣弧AC的長(zhǎng)度.
(1)證明見(jiàn)解析;(2)

試題分析:(1)先根據(jù)同弧所對(duì)的圓周角相等得出∠PBC=∠D,再由等量代換得出∠C=∠D,然后根據(jù)內(nèi)錯(cuò)角相等兩直線平行即可證明CB∥PD;
(2)先由垂徑定理及圓周角定理得出∠BOC=2∠PBC=45°,再根據(jù)鄰補(bǔ)角定義求出∠AOC=135°,然后根據(jù)弧長(zhǎng)的計(jì)算公式即可得出劣弧AC的長(zhǎng)度.
試題解析:(1)∵∠PBC=∠D,∠PBC=∠C,
∴∠C=∠D,
∴CB∥PD;
(2)∵AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,
,
∵∠PBC=∠C=22.5°,
∴∠BOC=∠BOD=2∠C=45°,
∴∠AOC=180°-∠BOC=135°,
∴劣弧AC的長(zhǎng)為:
【考點(diǎn)】1.垂徑定理;2.圓周角定理;3.弧長(zhǎng)的計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,AB=4,BC=2,P是⊙O上半部分的一個(gè)動(dòng)點(diǎn),連接OP,CP.
(1)求△OPC的最大面積;
(2)求∠OCP的最大度數(shù);
(3)如圖2,延長(zhǎng)PO交⊙O于點(diǎn)D,連接DB,當(dāng)CP=DB時(shí),求證:CP是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,,,,點(diǎn)是以為直徑的半圓上一動(dòng)點(diǎn),交直線于點(diǎn),設(shè).
(1)當(dāng)時(shí),求弧BD的長(zhǎng);
(2)當(dāng)時(shí),求線段的長(zhǎng);
(3)若要使點(diǎn)在線段的延長(zhǎng)線上,則的取值范圍是_________.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,如果從半徑為3cm的圓形紙片剪去
1
3
圓周的一個(gè)扇形,將留下的扇形圍成一個(gè)圓錐(接縫處不重疊),那么這個(gè)圓錐的體積是______cm3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在⊙O中,半徑為5,∠AOB=60°,則弦長(zhǎng)AB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,O是△ABC的外接圓的圓心,∠ABC=60°,BF,CE分別是AC,AB邊上的高且交于點(diǎn)H,CE交⊙O于M,D,G分別在邊BC,AB上,且BD=BH,BG=BO,下列結(jié)論:①∠ABO=∠HBC;②AB•BC=2BF•BH;③BM=BD;④△GBD為等邊三角形,其中正確結(jié)論的序號(hào)是( )
A.①②B.①③④C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若扇形的圓心角為60°,弧長(zhǎng)為2π,則扇形的半徑為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖7,△ABC是等腰直角三角形,AC=BC=,以斜邊AB上的點(diǎn)O為圓心的圓分別與AC,BC相切與點(diǎn)E,F(xiàn), 與AB 分別交于點(diǎn)G,H,且 EH 的延長(zhǎng)線和 CB 的延長(zhǎng)線交于點(diǎn)D,則 CD 的長(zhǎng)為          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,CD是⊙O的直徑,弦AB⊥CD于E,連接BC、BD,下列結(jié)論中不一定正確的是( 。

A.AE=BE         B. =         C.OE=DE            D.∠DBC=90°

查看答案和解析>>

同步練習(xí)冊(cè)答案