【題目】如圖,已知正方形ABCD的邊長為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長EF交
AB于G,連接DG,現(xiàn)在有如下4個(gè)結(jié)論:①≌;②;③∠GDE=45°;④
DG=DE在以上4個(gè)結(jié)論中,正確的共有( )個(gè)
A. 1個(gè) B. 2 個(gè) C. 3 個(gè) D. 4個(gè)
【答案】C
【解析】根據(jù)正方形的性質(zhì)和折疊的性質(zhì)可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,根據(jù)全等三角形性質(zhì)可求得∠GDE==45,再抓住△BEF是等腰三角形,而△GED顯然不是等腰三角形,判斷④是錯(cuò)誤的.
由折疊可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
∴△ADG≌△FDG,①正確;
∵正方形邊長是12,
∴BE=EC=EF=6,
設(shè)AG=FG=x,則EG=x+6,BG=12﹣x,
由勾股定理得:EG2=BE2+BG2,
即:(x+6)2=62+(12﹣x)2,
解得:x=4
∴AG=GF=4,BG=8,BG=2AG,②正確;
∵△ADG≌△FDG,△DCE≌△DFE,
∴∠ADG=∠FDG,∠FDE=∠CDE
∴∠GDE==45.③正確;
BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④錯(cuò)誤;
∴正確說法是①②③
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖⊙O是以等腰三角形ABC的底邊BC為直徑的外接圓,BD平分∠ABC交⊙O于D,且BD與OA、AC分別交于點(diǎn)E、F延長BA、CD交于G.
(1)試證明:BF=CG.
(2)線段CD與BF有什么數(shù)量關(guān)系?為什么?
(3)試比較線段CD與BE的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為BC的中點(diǎn),連接AE并延長交DC的延長線于點(diǎn)F.
(1)求證:AB=CF;
(2)當(dāng)BC與AF滿足什么數(shù)量關(guān)系時(shí),四邊形ABFC是矩形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在菱形ABCD中,∠ADC=60°,點(diǎn)H為CD上任意一點(diǎn)(不與C、D重合),過點(diǎn)H作CD的垂線,交BD于點(diǎn)E,連接AE.
(1)如圖1,線段EH、CH、AE之間的數(shù)量關(guān)系是 ;
(2)如圖2,將△DHE繞點(diǎn)D順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E、H、C在一條直線上時(shí),求證:AE+EH=CH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的面積為9,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C上y軸上,點(diǎn)B在反比例函數(shù)y=(k>0,x>0)的圖象上,點(diǎn)E從原點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度向x軸正方向運(yùn)動(dòng),過點(diǎn)E作x的垂線,交反比例函數(shù)y=(k>0,x>0)的圖象于點(diǎn)P,過點(diǎn)P作PF⊥y軸于點(diǎn)F;記矩形OEPF和正方形OABC不重合部分的面積為S,點(diǎn)E的運(yùn)動(dòng)時(shí)間為t秒.
(1)求該反比例函數(shù)的解析式.
(2)求S與t的函數(shù)關(guān)系式;并求當(dāng)S=時(shí),對(duì)應(yīng)的t值.
(3)在點(diǎn)E的運(yùn)動(dòng)過程中,是否存在一個(gè)t值,使△FBO為等腰三角形?若有,有幾個(gè),寫出t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BC=a,AC=b,AB=c.將Rt△ABC繞點(diǎn)O依次旋轉(zhuǎn)90°、180°和270°,構(gòu)成的圖形如圖所示.該圖是我國古代數(shù)學(xué)家趙爽制作的“勾股圓方圖”,也被稱作“趙爽弦圖”,它是我國最早對(duì)勾股定理證明的記載,也成為了2002年在北京召開的國際數(shù)學(xué)家大會(huì)的會(huì)標(biāo)設(shè)計(jì)的主要依據(jù).
(1)請(qǐng)利用這個(gè)圖形證明勾股定理;
(2)請(qǐng)利用這個(gè)圖形說明a2+b2≥2ab,并說明等號(hào)成立的條件;
(3)請(qǐng)根據(jù)(2)的結(jié)論解決下面的問題:長為x,寬為y的長方形,其周長為8,求當(dāng)x,y取何值時(shí),該長方形的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點(diǎn)A(,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是矩形ABCD的對(duì)角線AC上一點(diǎn),過點(diǎn)P作EF∥BC,GH∥AB.分別交AB、CD、AD、BC于E、F、G、H,連接PB.若AE=3,PF=8.則圖中陰影部分的面積為( )
A.8B.12C.16D.24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點(diǎn),點(diǎn)C在第一象限,AC⊥AB,且AC=AB,則點(diǎn)C的坐標(biāo)為( 。
A. (2,1) B. (1,2) C. (1,3) D. (3,1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com