【題目】在矩形ABCD中,AB3,AD4,將△ABD沿著BD折疊,使點(diǎn)A與點(diǎn)E重合.

1)如圖,對(duì)角線AC、BD相交于點(diǎn)O,連接OE,則線段OE的長(zhǎng)= ;

2)如圖,過(guò)點(diǎn)EEFCD交線段BD于點(diǎn)F,連接AF,求證:四邊形ABEF是菱形;

3)如圖,在(2)條件下,線段AEBD相交于M,連接CE,求線段CE的長(zhǎng).

【答案】1;(2)見(jiàn)解析;(3

【解析】

1)根據(jù)翻折的特點(diǎn)知OE=OA,由勾股定理求出AC即可求出OA;

2)先證明四邊形ABEF是平行四邊形,再由翻折知AB=BE,即可得到四邊形ABEF是菱形;

(3)先在(2)的前提下,求出BM的長(zhǎng),從而得到BF的長(zhǎng),然后求出DF,再證明出四邊形DFEC是平行四邊形即可得到EC=DF=

解:(1)

由翻折知識(shí)知:OE=OA,

OA= ,AC= , AB3AD4,

AC=5

OE= OA= =,

故答案為:

(2)證明:

四邊形ABCD是菱形,

ABCD,

EFCD,

ABEF ,

ABF=BFE

由翻折性質(zhì)可得:

ABF=∠EBF,ABBE ,

BFE=∠EBF

BEFE,

ABBE,

ABFE,

ABEF,

四邊形ABEF是平行四邊形,

又∵ BEFE,

平行四邊形ABEF是菱形;

(3)如圖,∵平行四邊形ABEF是菱形,

AEBDBMFM,

,

AM,

根據(jù)勾股定理得BM,

BF2BM DFBDBF,

EHCDEFCD,

四邊形EFCD是平行四邊形,

CEDF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,順次連接四邊形ABCD各邊中點(diǎn)得四邊形EFGH,要使四邊形EFGH為菱形,則應(yīng)添加的條件是( 。

A.ABDCB.ADBCC.ACBDD.ACBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)青化工廠與A、B兩地有公路、鐵路相連.這家工廠從A地購(gòu)買(mǎi)一批每噸1000元的原料運(yùn)回工廠,制成每噸8000元的產(chǎn)品運(yùn)到B地.已知公路運(yùn)價(jià)為1.5/(噸·千米),鐵路運(yùn)價(jià)為1.2/(噸·千米),且這兩次運(yùn)輸共支出公路運(yùn)輸費(fèi)15000元,鐵路運(yùn)輸費(fèi)97200元.

求:(1)該工廠從A地購(gòu)買(mǎi)了多少噸原料?制成運(yùn)往B地的產(chǎn)品多少噸?

2)這批產(chǎn)品的銷(xiāo)售款比原料費(fèi)與運(yùn)輸費(fèi)的和多多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人用元購(gòu)買(mǎi)了套兒童服裝,準(zhǔn)備以一定價(jià)格出售,如果以每套兒童服裝元的價(jià)格為標(biāo)準(zhǔn),超出的記作正數(shù),不足的記作負(fù)數(shù),記錄如下:,,,,,.(單位:元)

1)最高售價(jià)比最低高出多少?

2)當(dāng)他賣(mài)完這套兒童服裝后是盈利還是虧損?盈利(或虧損)了多少錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問(wèn)題.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,適與岸齊問(wèn)水深、葭長(zhǎng)各幾何譯文大意是:如圖,有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面.問(wèn)水的深度與這根蘆葦?shù)拈L(zhǎng)度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,ACBD交于點(diǎn)M,點(diǎn)FAD上,AF=6cm,BF=12cm,FBM=CBM,點(diǎn)EBC的中點(diǎn),若點(diǎn)P1cm/s秒的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)F運(yùn)動(dòng);點(diǎn)Q同時(shí)以2cm/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)到F點(diǎn)時(shí)停止運(yùn)動(dòng),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)__秒時(shí),以P、Q、E、F為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某?萍紝(shí)踐社團(tuán)制作實(shí)踐設(shè)備,小明的操作過(guò)程如下:

①小明取出老師提供的圓形細(xì)鐵環(huán),先通過(guò)在圓一章中學(xué)到的知識(shí)找到圓心O,再任意找出圓O的一條直徑標(biāo)記為AB(如圖1),測(cè)量出AB=4分米;

②將圓環(huán)進(jìn)行翻折使點(diǎn)B落在圓心O的位置,翻折部分的圓環(huán)和未翻折的圓環(huán)產(chǎn)生交點(diǎn)分別標(biāo)記為C、D(如圖2);

③用一細(xì)橡膠棒連接C、D兩點(diǎn)(如圖3);

④計(jì)算出橡膠棒CD的長(zhǎng)度.

小明計(jì)算橡膠棒CD的長(zhǎng)度為( )

A. 2分米 B. 2分米 C. 3分米 D. 3分米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,CDAB垂足為DAE平分∠CABCD于點(diǎn)F,交BC于點(diǎn)EEHAB,垂足為H,連接FH.

求證:(1)CFCE

(2)四邊形CFHE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)

A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面。

現(xiàn)有19張硬紙板,裁剪時(shí)張用A方法,其余用B方法。

1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)能做多少個(gè)盒子?

查看答案和解析>>

同步練習(xí)冊(cè)答案