在矩形ABCD中,已知對角線AC與BD交于點(diǎn)O,∠AOB=60°,CD=2,則AC=________,BD=________.

4    4
分析:根據(jù)矩形的性質(zhì)知:矩形的對角線相等且互相平分;那么易證得△AOB是等邊三角形,即AO=BO=AB=2,則AC=BD=2OA=4.由此得解.
解答:解:如圖;∵四邊形ABCD是矩形,
∴AC=BD,且OA=OC=OB=OD;
∵∠AOB=30°,
∴△AOB是等邊三角形;
∴OA=OB=AB=2;
∴AC=BD=2OA=4.
故答案為:4,4.
點(diǎn)評:本題主要考查的是矩形的性質(zhì):矩形的對角線相等且互相平分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在矩形ABCD中,已知E是BC的中點(diǎn),∠BAE=30°,AE=2,則AC=( 。
A、3
B、2
3
C、
7
D、
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在矩形ABCD中,已知AB=a,BC=b,P是邊CD上異于點(diǎn)C、D的任意一點(diǎn).
(1)若a=2b,當(dāng)點(diǎn)P在什么位置時(shí),△APB與△BCP相似?(不必證明)
(2)若a≠2b,①判斷以AB為直徑的圓與直線CD的位置關(guān)系,并說明理由;②是否存在點(diǎn)P,使以A、B、P為頂點(diǎn)的三角形與以A、D、P為頂點(diǎn)的三角形相似?(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,已知AB=2,BC=3,點(diǎn)E為AD邊上一動(dòng)點(diǎn)(不與A、D重合),連接CE,作EF⊥CE交AB邊于F
(1)求證:△AEF∽△DCE;
(2)當(dāng)△ECF∽△AEF時(shí),求AF的長;
(3)在點(diǎn)E的運(yùn)動(dòng)過程中,AD邊上是否存在異于點(diǎn)E的點(diǎn)G,使△AGF∽△DCG成立?若存在,請猜想點(diǎn)G的位置,并給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,已知AD=15,AB=8,P是AD邊上任意一點(diǎn),PE⊥BD,PF⊥AC,E,F(xiàn)分別是垂足,那么PE+PF=
120
17
120
17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,已知AB=1,BC=2,∠ABC的平分線交AD于點(diǎn)F,E為BC的中點(diǎn),連接EF.
(1)求BF的長度;
(2)求證:四邊形ABEF是正方形;
(3)設(shè)點(diǎn)P是線段BF上的一個(gè)動(dòng)點(diǎn),點(diǎn)N是矩形ABCD的對稱中心,是否存在點(diǎn)P,使∠APN=90°?若存在,請直接寫出BP的長度;若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案