【題目】如圖所示,已知函數(shù)y=ax2(a≠0)的圖象上的點D,C與x軸上的點A(-5,0)和B(3,0)構成ABCD,DC與y軸的交點為E(0,6),試求a的值.

【答案】

【解析】

A(-5,0)和B(3,0)得出AB=8,進一步得出CD=AB=8,所以D點的橫坐標為-4,再結合E(0,6),得出點D的縱坐標為6,代入D點坐標求得a的數(shù)值即可.

解:∵點A(-5,0)B(3,0),

AB=8.

∵四邊形ABCD是平行四邊形,

CD=8,CDAB.

又∵ABy軸,拋物線yax2的對稱軸為y軸,∴CDy軸,

DECD=4,點D,C,E的縱坐標相同.

又∵點E的坐標為(0,6),

∴點D的坐標為(-4,6).

D(-4,6)代入yax2

解得a.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:

ab)(a+b)=a2b2

ab)(a2+ab+b2)=a3b3

ab)(a3+a2b+ab2+b3)=a4b4

利用你的發(fā)現(xiàn)的規(guī)律解決下列問題

1)(ab)(a4+a3b+a2b2+ab3+b4)=   (直接填空);

2)(ab)(an1+an2b+an3b2…+abn2+bn1)=   (直接填空);

3)利用(2)中得出的結論求62019+62018+…+62+6+1的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCC=90°,以點C為圓心,BC為半徑的圓交AB于點D,AC于點E.

(1)A=25°,的度數(shù);

(2)BC=9,AC=12,BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A、B兩點,點A在點B左側,點B的坐標為(1,0)、C(0,﹣3).

(1)求拋物線的解析式.

(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.

(3)若點Ex軸上,點P在拋物線上,是否存在以A、C、E、P為頂點且以AC為一邊的平行四邊形?如存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A6,0),B8,5),將線段OA平移至CB,點Dx,0)在x軸正半軸上(不與點A重合),連接OC,AB,CD,BD

1)求對角線AC的長;

2ODCABD的面積分別記為S1,S2,設SS1S2,求S關于x的函數(shù)解析式,并探究是否存在點D使SDBC的面積相等,如果存在,請求出x的值(或取值范圍);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=ax2+b與y=bx2+ax的圖象可能是(  )

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知函數(shù)y=ax2(a≠0)的圖象上的點D,C與x軸上的點A(-5,0)和B(3,0)構成ABCD,DC與y軸的交點為E(0,6),試求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】出租車司機小李某天上午營運時是在東西走向的大街上進行的,如果規(guī)定向東為正,向西為負,他這天上午所接六位乘客的行車里程(單位:)如下:

,,,,

問:(1)將最后一位乘客送到目的地時,小李在什么位置?

2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?

3)若出租車起步價為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC在直角坐標系中.

1)寫出點A,點B的坐標A    ,    ),B        );

2SABC=    ;

3)若把ABC向上平移2個單位,再向右平移2個單位得A1B1C1,在圖中畫出A1B1C1的位置,并寫出點A1、B1C1的坐標.

查看答案和解析>>

同步練習冊答案