【題目】觀察下列等式:
(a﹣b)(a+b)=a2﹣b2
(a﹣b)(a2+ab+b2)=a3﹣b3
(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…
利用你的發(fā)現(xiàn)的規(guī)律解決下列問題
(1)(a﹣b)(a4+a3b+a2b2+ab3+b4)= (直接填空);
(2)(a﹣b)(an﹣1+an﹣2b+an﹣3b2…+abn﹣2+bn﹣1)= (直接填空);
(3)利用(2)中得出的結(jié)論求62019+62018+…+62+6+1的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長為1cm,平移圖中的△ABC,使點(diǎn)B移到點(diǎn)B1的位置.
(1)利用方格和直尺畫圖
①畫出平移后的△A1B1C1
②畫出AB邊上的中線CD;
③畫出BC邊上的高AH;
(2)線段A1C1與線段AC的位置關(guān)系與數(shù)量關(guān)系為 ;
(3)△A1B1C1的面積為 cm2;△BCD的面積為 cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為6的正方形ABCD內(nèi)部有一點(diǎn)P,BP=4,∠PBC=60°,點(diǎn)Q為正方形邊上一動點(diǎn),且△PBQ是等腰三角形,則符合條件的Q點(diǎn)有__________個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線,與,分別相交于點(diǎn),,且,交直線于點(diǎn).
(1)若,求的度數(shù);
(2)若,,,求直線與的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形紙片ABCD中,AB=8,將紙片折疊,使頂點(diǎn)B落在邊AD上的E點(diǎn)處,折痕的一端G點(diǎn)在邊BC上,折痕的另一端F在AD邊上且BG=10時.
(1)證明:EF=EG;
(2)求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖AD為△ABC的中線,分別以AB和AC為一邊在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,連接EF,∠EAF+∠BAC=180°
(1)如圖1,若∠ABE=63°,∠BAC=45°,求∠FAC的度數(shù);
(2)如圖1請?zhí)骄烤段EF和線段AD有何數(shù)量關(guān)系?并證明你的結(jié)論;
(3)如圖2,設(shè)EF交AB于點(diǎn)G,交AC于點(diǎn)R,延長FC,EB交于點(diǎn)M,若點(diǎn)G為線段EF的中點(diǎn),且∠BAE=70°,請?zhí)骄俊?/span>ACB和∠CAF的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點(diǎn)坐標(biāo)為(,﹣2);⑤當(dāng)x<時,y隨x的增大而減小;⑥a+b+c>0正確的有( 。
A. 3個 B. 4個 C. 5個 D. 6個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一元二次方程,有下列說法:
①若,則方程必有一個根為1;
②若方程有兩個不相等的實(shí)根,則方程必有兩個不相等的實(shí)根;
③若是方程的一個根,則一定有成立;
④若是一元二次方程的根,則.
其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】再讀教材:寬與長的比是(約為)的矩形叫做黃金矩形,黃金矩形給我們以協(xié)調(diào)、勻稱的美感.世界各國許多著名的建筑,為取得最佳的視覺效果,都采用了黃金矩形的設(shè)計(jì),下面我們用寬為的矩形紙片折疊黃金矩形(提示:)
第一步:在矩形紙片一端利用圖①的方法折出一個正方形,然后把紙片展平.
第二步:如圖②,把這個正方形折成兩個相等的矩形,再把紙片展平.
第三步:折出內(nèi)側(cè)矩形的對角線,并把折到圖③中所示的處.
第四步:展平紙片,按照所得的點(diǎn)折出使則圖④中就會出現(xiàn)黃金矩形.
問題解決:
(1)圖③中_ (保留根號);
(2)如圖③,判斷四邊形的形狀,并說明理由;
(3)請寫出圖④中所有的黃金矩形,并選擇其中一個說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com