【題目】如圖,已知拋物線y=x2+bx+c的圖像與x軸的一個(gè)交點(diǎn)為A(1,0),另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C(0,5).
(1)求直線BC及拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方圖像上的一動(dòng)點(diǎn),過點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時(shí),若點(diǎn)P是拋物線在x軸下方圖像上任意一點(diǎn),以BC為邊作□CBPQ,設(shè)□CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點(diǎn)P的坐標(biāo).
【答案】(1)y=-x+5, y=x2-6x+5;(2); (3)點(diǎn)P的坐標(biāo)為P1(2,-3)(與點(diǎn)D重合)或P2(3,-4).
【解析】分析:(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式,
(2)根據(jù)平行于y軸直線上兩點(diǎn)間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可由頂點(diǎn)式求解;
(3)先求出△ABN的面積和BC的長,再根據(jù)平行四邊形的面積和△ABN的面積的關(guān)系,可得平行四邊形高的長,根據(jù)等腰直角三角形,可得CE的長,根據(jù)待定系數(shù)法,可得PQ的解析式,根據(jù)解方程可得答案.
詳解:(1)∵拋物線y=x2+bx+c與x軸的一個(gè)交點(diǎn)為A(1,0),與y軸交于點(diǎn)C(0,5),
∴將A(1,0),C(0,5)代入y=x2+bx+c,
解得:b=-6,c=5.
∴二次函數(shù)解析式為:y=x2-6x+5.
令y=0,求得另一交點(diǎn)B的坐標(biāo)為(5,0)
設(shè)直線BC的解析式為:y=kx+5.
將B(5,0)代入直線BC解析式y(tǒng)=kx+5.
解得:k=-1.
∴直線BC的解析式為:y=-x+5.
(2)如圖①.設(shè)M(x,y),則
NM=-x+5-(x2-6x+5).
NM=-x2+5x.
NM=-(x-)2+.
∴NM的最大值為.
(3)如圖②由第2問易得S2=5,∴S1=6S2=30.
BC=5,BC所在直線的解析式為:y=-x+5,
∠CBO=45°,
∵S2=30.∴平行四邊形CBPQ中BC邊上的高為.
過點(diǎn)C作CD⊥PQ與PQ所在直線相交于點(diǎn)D,
PD交y軸于點(diǎn)E,CD=3,∴CE=6,
∵平行四邊形CBPQ的邊PQ所在直線,在直線BC的兩側(cè)可能各有一條,但點(diǎn)P在x軸下方,
∴PQ的解析式為y=-x-1.
∵點(diǎn)P同時(shí)在拋物線和直線PQ上,
∴x2-6x+5=-x-1.解得x1=2,x2=3,
∴P1(2,-3),P2(3,-4).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小蟲從點(diǎn)A出發(fā)在一條直線上來回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程記為負(fù)數(shù),爬行的路程依次為:(單位:cm)①+5,②-3,③+10,④-8,⑤-6,⑥+11,⑦-9.
(1)小蟲最后是否回到出發(fā)點(diǎn)A,說明理由;
(2)小蟲在第幾次爬行后離點(diǎn)A最遠(yuǎn),此時(shí)距離點(diǎn)A多少厘米?
(3)在爬行過程中,如果每爬行1厘米獎(jiǎng)勵(lì)一粒芝麻,那么小蟲一共得到多少粒芝麻?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖象(折線OEFPMN)描述了某汽車在行駛過程中速度與時(shí)間的函數(shù)關(guān)系,下列說法中錯(cuò)誤的是( )
A. 第3分時(shí)汽車的速度是40千米/時(shí)
B. 第12分時(shí)汽車的速度是0千米/時(shí)
C. 從第3分到第6分,汽車行駛了120千米
D. 從第9分到第12分,汽車的速度從60千米/時(shí)減少到0千米/時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC的中點(diǎn),DE⊥BC交AC于點(diǎn)E,已知AD=AB,連接BE交AD于點(diǎn)F,下列結(jié)論:①BE=CE;②∠CAD=∠ABE;③S△ABF=3S△DEF;④△DEF∽△DAE,其中正確的有( 。
A. 1個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“水是生命之源”,某市自來水公司為了鼓勵(lì)居民節(jié)約用水,規(guī)定按以下標(biāo)準(zhǔn)收取水費(fèi):
用水量/月 | 單價(jià)(元/m3) |
不超過20m3 | 2.8 |
超過20m3的部分 | 3.8 |
另:每立方米用水加收0.2元的城市污水處理費(fèi) |
(1)根據(jù)上表,用水量每月不超過20m3,實(shí)際每立方米收水費(fèi)_____元;如果1月份某用戶用水量為19m3,那么該用戶1月份應(yīng)該繳納水費(fèi)____元;
(2)某用戶2月份共繳納水費(fèi)80元,那么該用戶2月份用水多少m3?
(3)若該用戶水表3月份出了故障,只有70%的用水量記入水表中,這樣該用戶在3月份只繳納了58.8元水費(fèi),問該用戶3月份實(shí)際應(yīng)該繳納水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E. F,垂足為O.
(1)如圖1,連接AF、CE.求證:四邊形AFCE為菱形.
(2)如圖1,求AF的長.
(3)如圖2,動(dòng)點(diǎn)P、Q分別從A. C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周。即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止。在運(yùn)動(dòng)過程中,點(diǎn)P的速度為每秒1cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①問在運(yùn)動(dòng)的過程中,以A. P、C. Q四點(diǎn)為頂點(diǎn)的四邊形有可能是矩形嗎?若有可能,請求出運(yùn)動(dòng)時(shí)間t和點(diǎn)Q的速度;若不可能,請說明理由.
②若點(diǎn)Q的速度為每秒0.8cm,當(dāng)A. P、C. Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進(jìn)了這種禮盒并且全部售完;2016年,這種禮盒的進(jìn)價(jià)比2014年下降了11元/盒,該商店用2400元購進(jìn)了與2014年相同數(shù)量的禮盒也全部售完,禮盒的售價(jià)均為60元/盒.
(1)2014年這種禮盒的進(jìn)價(jià)是多少元/盒?
(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=120°,OC是∠AOB內(nèi)部任意一條射線,OD,OE分別是∠AOC,∠BOC的角平分線,下列敘述正確的是( )
A. ∠AOD+∠BOE=60°B. ∠AOD=∠EOC
C. ∠BOE=2∠CODD. ∠DOE的度數(shù)不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,BD是正方形ABCD的對角線,BC=4,點(diǎn)H是AD邊上的一動(dòng)點(diǎn),連接CH,作,使得HE=CH,連接AE。
(1)求證:;
(2)如圖2,過點(diǎn)E作EF//AD交對角線BD于點(diǎn)F,試探究:在點(diǎn)H的運(yùn)動(dòng)過程中,EF的長度是否為一個(gè)定值;如果是,請求出EF的長度。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com